Recently, Delgado-Inglada and collaborators have shown that low-mass (between one and three times the mass of the Sun) planetary nebulae are rich in oxygen, but the standard theoretical models do not predict this. In this work we explain this phenomenon for the first time using theoretical models of nucleosynthesis (production of chemical elements in the interiors of stars) in their precursor AGB stars, which include convective processes, (which transport chemical elements created in the interior to the surface of the star) more efficient than in the standard models. This discovery calls into question the traditional role of planetary nebulae as indicators of metallicity, which is the term used to cover the abundance of the elements which are heavier than hydrogen and helium initially present in the Universe, because now it has been confirmed theoretically that they are intrinsically rich in oxygen. The abundance of oxygen has been used historically to study the differences in the metallicity of our Galaxy and those of other nearby galaxies. In its place, this work confirms that other elements which are not so affected by stellar evolution, such as argon or chlorine should be used as indicators of metallicity. In the future, it will be necessary to use the predictions of these new models to analyse in detail the effect of these oxygen producing stars on the models of chemical evolution of galaxies; in fact they may have an important effect on the characteristic time scales for the formation of the majority of the stars in galaxies.
Advertised on
References
It may interest you
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on
-
It is well known that fullerenes – big, complex, and highly resistant carbon molecules with potential applications in nanotechnology – are mostly seen in planetary nebulae (PNe); old dying stars with progenitor masses similar to our Sun. Fullerenes, like C60 and C70, have been detected in PNe whose infrared (IR) spectra are dominated by broad unidentified IR (UIR) plateau emissions. The identification of the chemical species (structure and composition) responsible for such UIR emission widely present in the Universe is a mystery in astrochemistry; although they are believed to be carbon-richAdvertised on