We analyze the spectral asymmetry of Stokes V (circularly polarized) profiles of an individual network patch in the quiet Sun observed by Sunrise/IMaX. At a spatial resolution of 0".15-0".18, the network elements contain substructure which is revealed by the spatial distribution of Stokes V asymmetries. The area asymmetry between the red and blue lobes of Stokes V increases from nearly zero at the core of the structure to values close to unity at its edges (single-lobed profiles). Such a distribution of the area asymmetry is consistent with magnetic fields expanding with height, i.e., an expanding magnetic canopy (which is required to fulfill pressure balance and flux conservation in the solar atmosphere). Inversion of the Stokes I and V profiles of the patch confirms this picture, revealing a decreasing field strength and increasing height of the canopy base from the core to the periphery of the network patch. However, the non-roundish shape of the structure and the presence of negative area and amplitude asymmetries reveal that the scenario is more complex than a canonical flux tube expanding with height surrounded by downflows.
Advertised on
References
2012, ApJ, 758, 40L
It may interest you
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on
-
Light bridges are elongated and bright structures protruding into the umbra of sunspots. The presence of light bridges has a significant role in the evolution of sunspots and the heating of their overlying atmosphere. Therefore, investigating these structures is crucial to understanding fundamental aspects of sunspots. By applying a novel code based on deep-learning algorithms called SICON to spectropolarimetric observations acquired with the Hinode satellite, we computed atmospheric parameters that allowed us to infer the variation of the physical properties of light bridges on a geometricAdvertised on
-
The universality of the stellar initial mass function (IMF) is one of the most widespread assumptions in modern Astronomy and yet, it might be flawed. While observations in the Milky Way generally support an IMF that is invariant with respect to the local conditions under which stars form, measurements of massive early-type galaxies systematically point towards a non-universal IMF. To bridge the gap between both sets of evidence, in this work we measured for the first time the low-mass end of the IMF from the integrated spectra of a Milky Way-like galaxy, NGC3351. We found that the slope ofAdvertised on