We report far-infrared (FIR) imaging of the Seyfert 2 galaxy NGC 3081 in the range 70- 500 μm, obtained with an unprecedented angular resolution, using the Herschel Space Observatory instruments PACS and SPIRE. The 11 kpc (∼70′′) diameter star-forming ring of the galaxy appears resolved up to 250 μm. We extracted infrared (1.6-500 μm) nuclear fluxes, that is active nucleus-dominated fluxes, and fitted them with clumpy torus models, which successfully reproduce the FIR emission with small torus sizes. Adding the FIR data to the near- and mid-infrared spectral energy distribution (SED) results in a torus radial extent of Ro=4±2 pc, as well as in a flat radial distribution of the clouds (i.e. the q parameter). At wavelengths beyond 200 μm, cold dust emission at T=28±1 K from the circumnuclear star-forming ring of 2.3 kpc (∼15′′) in diameter starts making a contribution to the nuclear emission. The dust in the outer parts of the galaxy is heated by the interstellar radiation field (19±3 K).
Advertised on
It may interest you
-
Light bridges are elongated and bright structures protruding into the umbra of sunspots. The presence of light bridges has a significant role in the evolution of sunspots and the heating of their overlying atmosphere. Therefore, investigating these structures is crucial to understanding fundamental aspects of sunspots. By applying a novel code based on deep-learning algorithms called SICON to spectropolarimetric observations acquired with the Hinode satellite, we computed atmospheric parameters that allowed us to infer the variation of the physical properties of light bridges on a geometricAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on