The best spectrographs are limited in stability by their calibration light source. Laser frequency combs are the ideal calibrators for astronomical spectrographs. They emit a spectrum of lines that are equally spaced in frequency and that are as accurate and stable as the atomic clock relative to which the comb is stabilized. Absolute calibration provides the radial velocity of an astronomical object relative to the observer (on Earth). For the detection of Earth-mass exoplanets in Earth-like orbits around solar-type stars, or of cosmic acceleration, the observable is a tiny velocity change of less than 10 cm s-1, where the repeatability of the calibration – the variation in stability across observations – is important. Hitherto, only laboratory systems or spectrograph calibrations of limited performance have been demonstrated. Here we report the calibration of an astronomical spectrograph with a short-term Doppler shift repeatability of 2.5 cm s-1, and use it to monitor the star HD75289 and recompute the orbit of its planet. This repeatability should make it possible to detect Earth-like planets in the habitable zone of star or even to measure the cosmic acceleration directly.
It may interest you
-
When the Sun is observed in X-ray or extreme ultraviolet wavelengths, hundreds of bright and compact structures with a rounded shape and sizes similar to that of our planet Earth can be easily distinguished in the solar corona. These structures are known as Coronal Bright Points or CBPs and they consist of sets of magnetic loops that connect areas of opposite magnetic polarity on the solar surface. These loops confine the solar plasma and in them, by mechanisms that have been debated for many years among solar physicists, the gas remains with temperatures of several million degrees, emitting
Advertised on -
The standard cosmological model states that massive galaxies contain a large fraction of dark matter. Dark matter is a transparent substance that does not interact through regular baryonic matter and is only detected through its gravitational pull over the stars and the gas. NGC 1277 is known as the prototype of a relic galaxy, that is, a galaxy that has not accreted other galaxies since it formed. Relic galaxies are extremely rare and are the untouched remains of the giant galaxies that populated the early Universe. Since relic galaxies are very important to understand the conditions in the
Advertised on -
When matter falls into supermassive black holes in the centres of galaxies, it unleashes enormous amounts of energy and is called active galactic nuclei (or AGN). A fraction of AGN release part of this energy as jets that are detectable in radio wavelengths that travel at velocities close to light speed. Our research into the interplay between the jet and the cold gas in the Teacup galaxy helps us to better understand how galaxies evolve. The Teacup is a radio-quiet quasar located 1.3 billion light years from us and its nickname comes from the expanding bubbles seen in the optical and radio
Advertised on