News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Image Caption: Artist’s impression of the graphenes (C24) and fullerenes found in a Planetary Nebula. The detection of graphenes and fullerenes around old stars as common as our Sun suggests that these molecules and other allotropic forms of carbon such a
    Nobel-prize winning scientists (2010), Andre Geim and Konstantin Novoselov, synthesized graphene in the laboratory in 2004. Just seven years later, this material of extraordinary strength, thinness and elasticity may have been found in space. The first evidence of the possible existence of C 24 - a flat two-dimensional molecule, one atom thick, possibly a "small piece of graphene - in space has been found. To confirm beyond a doubt that what has been detected is actually C 24, laboratory spectroscopy would have to be carried out, something which is practically impossible with current
    Advertised on
  • Artistic composition of the fullerenes and polycyclic aromatic hydrocarbons found in a R Corona Borealis star rich in hydrogen. The non-detection of these molecules in the vast majority of very hydrogen-poor R Coronae Borealis stars contradicts the terres
    The largest known molecules in space, fullerenes, do not occur in hydrogen-poor environments as previously thought. Fullerenes are very stable molecules and difficult to destroy, they have a structure very similiar to that of a soccer ball and made of 60 carbon atoms arranged in three-dimensional spherical structures and patterns of alternative hexagons and pentagons. These molecules were synthesized in the laboratory by chemists Harold Kroto and Richard Smalley, who thus received the 1996 Nobel Prize in Chemistry. Kroto and Smalley, according to the laboratory experiments, believed that
    Advertised on
  • Left: time evolution of a weak circular polarization patch. The black and white background represents the magnetic flux density computed in the weak field approximation, saturated to +- 20 Mx cm-2. Blue lines represent iso-magnetic flux densities of -130,
    As we enhance the spatial resolution and sensitivity of spectro-polarimetric measurements, it becomes increasingly evident that highly dynamic magnetic fields permeate the whole quiet Sun. These weak magnetic flux concentrations emerge somewhat preferentially in granules, where plasma motions are more favorable for the magnetic fields to rise across the solar atmosphere. Surprisingly (due to their weak nature), organized structures in the form of Omega-shaped loops survive convective motions and reach higher layers, at least the lower chromosphere (Martínez González & Bellot Rubio 2009
    Advertised on
  • Footnote: Projected mid-section trajectory of the sunbeam that reaches the lunar disk targeted by the telescope at 21:36UT on 16 August 2008. Overplotted, the SO2 cloud (a usual volcanic cloud tracer) on 15, 16 and 17 August (red, green and blue, respecti
    The Moon's changeable aspect during a lunar eclipse is largely attributable to variations in the refracted unscattered sunlight absorbed by the terrestrial atmosphere that occur as the satellite crosses the Earth's shadow. The contribution to the Moon's aspect from sunlight scattered at the Earth's terminator is generally deemed minor. However, our analysis of a published spectrum of the 16 August 2008 lunar eclipse shows that diffuse sunlight is a major component of the measured spectrum at wavelengths shorter than 600 nm. The conclusion is supported by two distinct features, namely the
    Advertised on
  • We present photometric and spectroscopic observations of the members of three previously cataloged compact group (CG) candidatesat redshifts $z>0.3$. These confirm spectroscopic  redshifts compatiblewith being gravitationally bound structures  at redshifts 0.3112, 0.3848and 0.3643 respectively, and then they are the most distant  CGs known with  spectroscopic confirmation for all their members.  The morphological and spectroscopic properties of all their galaxies  indicate early types dominated by an old population of stars, with little star formation or nuclear activity. Most of the
    Advertised on
  • Representation of emitted light from Kepler-10b during its different phases, according to the Lava-ocean model. The reflected light has a similar geometry, but a spectral content close to that of the stellar light
    The Kepler mission has made an important observation, the first detection of photons from a terrestrial planet by observing its phase curve (Kepler-10b). This opens a new field in exoplanet science: the possibility to get information about the atmosphere and surface of rocky planets, objects of prime interest. In this letter, we apply the Lava-ocean model to interpret the observed phase curve. The model, a planet with no atmosphere and a surface partially made of molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e. rocky planets very close to their star (at few stellar
    Advertised on