News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • A snapshot from TESS of part of the southern sky showing the location of ν Indi (marked by the blue circle), the plane of the Milky Way (bottom left) and the southern ecliptic pole (top). These snapshots come from data collected in TESS observing sectors 1, 12 and 13 Credit: J. T. Mackereth.
    Earlier this year, a team of astrophysicists has revealed new insights on an ancient collision that our galaxy the Milky Way underwent with another smaller galaxy called Gaia-Enceladus early in its history. However the details on how and when that collision happened are not precisely known. The study of a single bright star called nu Indi, for which data from the NASA mission TESS (Transiting Exoplanet Survey Satellite), the ESA Gaia mission, and ground-based observations were combined, led to better characterize this event. Indeed, by applying a novel approach based on asteroseismology
    Advertised on
  • RGB image of PSZ1 G158.34-47.49, one of the clusters studied, which has a spectroscopic redshift z=0.311. In the image you can see a gravitational lens arc. The photometric image was taken with ACAM/WHT; the spectroscopic data are from DOLORES/TNG.
    An international team led by the group of Cosmology with Galaxy Clusters of the Instituto de Astrofísica de Canarias (IAC), including researchers from the University of Paris-Saclay (France) and the Max Planck Institute for Extraterrestrial Physics (Garching, Germany) has finished the optical characterization of new clusters of galaxies in the northern hemisphere, detected first by the Planck satellite using tjhe Suyaev-Zel’dovich signal. These studies allow more accurate determination of the mean matter density in the universe and other cosmological parameters. The observations, which have
    Advertised on
  • Three-dimensional visualization of the geometric extent of the chromosphere above active region NOAA 12565. An image of the Earth is added to provide a sense of scale.
    Sunspots are intense collections of magnetic fields that pierce through the Sun’s photosphere, with their signatures extending upwards into the outermost extremities of the solar corona. Cutting-edge observations and simulations are providing insights into the underlying wave generation, configuration and damping mechanisms found in sunspot atmospheres. However, the in situ amplification of magnetohydrodynamic waves, rising from a few hundreds of metres per second in the photosphere to several kilometres per second in the chromosphere, has, until now, proved difficult to explain. Theory
    Advertised on
  • Impresión artística de la estrella HD 93396 y su planeta. Crédito: ESA.
    CHEOPS, the new exoplanet mission of the European Space Agency (ESA) in coordination with Switzerland, in which the Instituto de Astrofísica de Canarias (IAC) is participating along with other European instituttions, has successfully complete its almost three month period of the verification and calibration of its instrument, with better results than expected. Astrophysicists from the IAC are leading a group of researchers and engineers who recommend the type of observations to monitor the behaviour of the satellite during its time in space and, as part of the science team, participate in
    Advertised on
  • Artistic rendition of the re-ionisation process. Each dot is a galaxy, which ionises its surroundings forming a bubble. These bubbles can grow depending of the ionising power of each galaxy. If the galaxies are close together the bubbles can merge and form a much larger bubble. With time all the bubbles will merge till the Universe become re-ionised. Ionisation is the process under which high energy photons from the galaxies kick out the electron from the neutral hydrogen atoms thus leaving them ionised.
    We show herein that a proto-cluster of Lyα emitting galaxies, spectroscopically confirmed at redshift 6.5, produces a remarkable number of ionising continuum photons. We start from the Lyα fluxes measured in the spectra of the sources detected spectroscopically. From these fluxes we derive the ionising emissivity of continuum photons of the proto-cluster, which we compare with the ionising emissivity required to reionise the proto-cluster volume. We find that the sources in the proto-cluster are capable of ionising a large bubble, indeed larger than the volume occupied by the proto-cluster
    Advertised on
  • Artists impression of an active galactic nucleus. Credit: University of Boston-Cosmovision
    An international team of scientists has obtained the first unequivocal detection of a very high speed jet of matter emitted by a galaxy in the process of merging with another. The flux of particles and radiation, which is emitted by the supermassive black hole in the centre of the galaxy and which is observed face on, shows that it is a precursor structure to the formation of a blazar, one of the most energetic objects known. This discovery was made by combining observations from several telescopes, among them the Gran Telescopio Canarias and the William Herschel Telescope at the Roque de
    Advertised on