News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Opening STARMUS Festival 2011. Left to right: F. Sanchez, G. Israelian, Robert Williams, Juan Ruiz Arzola, Buzz Aldrin (invited), Alexei Leonov y Brian May.
    The Instituto de Astrofísica de Canarias (IAC) is collaborating with this multidisciplinary festival for Astrophysics and Space SciencesThe second event, which has the slogan "Beginnings: the making of the modern cosmos" will take place in Tenerife and La Palma from 22 to 28 September 2014
    Advertised on
  • Tc slopes versus ages for the full sample (top panel) and for the solar analogs (bottom panel). Gray solid lines provide linear fits to the data points.
    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope significantly correlates (at more than 4σ) with the stellar age and the stellar surface gravity (see Figure 1). We also find tentative evidence that the Tc slope correlates with the mean
    Advertised on
  • Figure caption: This is the spectrum of a massive AGB star (white dots) together with the predictions of the new model atmospheres (yellow line), and of the previous models which did not include the envelope (blue line). The Rubidium is detected as a very
    Intermediate mass stars, in their last phases of evolution ("AGB stars"),produce a large number of heavy elements (rich in neutrons), some ofthem radioactive isotopes, such as Rubidium and Technetium. Theseelements are pushed outwards to the surface of the star, and afterwards released into the interstellar medium. Among this type of stars, those least studied have been the more massive ones (between 4 and 8 times the mass of the Sun). Massive AGB stars have been recently identified in our Galaxy and in other nearby galaxies, such as the Magellanic Clouds, thanks to the detection of strong
    Advertised on
  • Figure caption: Grey scale representation of the probability density distribution of the location of 575 Galactic stars in the spectroscopic Hertzsprung-Russell diagram. Three empirical borderlines between densely populated regions and empty regions are d
    The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, which are often poorly known for Galactic stars. The spectroscopic Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is independent of distance and extinction measurements. Based on spectroscopically derived effective temperatures and gravities of almost 600 stars, we derive for the first time the observational distribution of
    Advertised on