News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • VIMOS-IFU spectroscopy of the shock front in the remnant of SN 1006. The top-left panel shows a composite imageof the full remnant (≈30′ in diameter), combining data from the Very Large Array and Green Bank Telescope (red;NRAO/AUI/NSF/GBT/VLA/Dyer, Maddal
    Supernova remnants are among the most spectacular examples of astrophysical pistons in our cosmic neighborhood. The gas expelled by the supernova explosion is launched with velocities ∼1000 km/s into the ambient, tenuous interstellar medium, producing shocks that excite hydrogen lines. We have used an optical integral-field spectrograph to obtain high-resolution spatial-spectral maps that allow us to study in detail the shocks in the northwestern rim of supernova 1006. The two-component Halpha line is detected at 133 sky locations. Variations in the broad line widths and the broad-to-narrow
    Advertised on
  • Fig. 1: Top panel: orbital phase shift at the time of the inferior conjunction (orbital phase 0), Tn, of the secondary star in the BHXB XTE J1118+480 versus the orbital cycle number, n, folded on the best-fit parabolic fit. The error bars give the observa
    We present new 10.4 m-GTC/OSIRIS spectroscopic observations of the black hole X-ray binary XTE J1118+480 that confirm the orbital period decay at (dP/dt) = −1.90 ± 0.57 ms yr −1. This corresponds to a period change of −0.88 ± 0.27 μs per orbital cycle. We have also collected observations of the black hole X-ray binary A0620–00 to derive an orbital period derivative of (dP/dt)= −0.60 ± 0.08 ms yr −1 (−0.53 ± 0.07 μs/cycle). Angular momentum losses due to gravitational radiation are unable to explain these large orbital decays in these two short- period black hole binaries. The orbital period
    Advertised on
  • Artist's impression of complex fullerenes (carbon onions or multishell fullerenes such as C60@C240 and C60@C240@C540) produced by a planetary nebula and expelled into the interstellar medium. The connection between these molecules and certain diffuse inte
    We have found evidence that the presence of ‘carbon onions’ and other large molecules derived from fullerene could be commonplace in space. These are the most complex molecules detected so far and their discovery has important implications regarding our understanding of circumstellar and interstellar physics and chemisty, as well as of molecular processes in the final stages of stellar evolution. The work also provides new insights into understanding the origin and composition of the so-called diffuse interstellar bands (DIBs), one of the most enigmatic phenomena in astrophysics. Discovered
    Advertised on
  • Constraints on stellar rotation and planet mass. The dark-red and light-red regions are the 1-σ and 2- σ seismic constraints on stellar rotation in the plane (Ω / ΩSun) - (sin i), where Ω is the bulk angular velocity, ΩSun / 2 π= 0.424 μHz is the solar Ca
    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD52265, a CoRoT prime target known to host a planetary companion. These seismic inferences are remarkably consistent with an independent
    Advertised on
  • Selection window employed to look for our LBGs at z ~ 3 (light grey shaded zone). Black dots are the complete sample of galaxies in the Capak et al. (2004) photometric catalog. Red filled dots represent the sample of LBGs spectroscopically confirmed to be
    Lyman break galaxies (LBGs) represent one of the kinds of star-forming galaxies that are found in the high-redshift universe. The detection of LBGs in the FIR domain can provide very important clues on their dust attenuation and total star-formation rate (SFR), allowing a more detailed study than those performed so far. In this work we explore the FIR emission of a sample of 16 LBGs at z ~ 3 in the GOODS-North and GOODS-South fields that are individually detected in PACS-100um or PACS-160um. These detections demonstrate the possibility of measuring the dust emission of LBGs at high redshift
    Advertised on
  • Abundance ratios of oxygen, magnesium and silicon relative to iron for the five stars in the bulge discovered by APOGEE (black filled circles) and literature values for other populations in the bulge (open circles), halo (squares), thin disk (crosses) and
    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III (SDSS-III), is exploring the chemistry of all Galactic stellar populations
    Advertised on