News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • The neighborhood of NGC1277 as seen by the HST F625W filter. The left panel shows the two closest galaxies whose light contaminate  NGC1277.  The right panel shows NGC1277 after the subtraction of the contaminant light.  The results indicates that NGC1277
    As early as 10 Gyr ago, galaxies with more than 10 ^11 M_sun in stars already existed. While most of these  massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (<0.1%) may have survived untouched till today. Searches for such relic galaxies, useful windows to explore the early Universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M_*>10 ^11 M_sun; R_e<1.5 kpc) have been found in the local Universe, but their stars are far too young for the galaxy to be a
    Advertised on
  • VIMOS-IFU spectroscopy of the shock front in the remnant of SN 1006. The top-left panel shows a composite imageof the full remnant (≈30′ in diameter), combining data from the Very Large Array and Green Bank Telescope (red;NRAO/AUI/NSF/GBT/VLA/Dyer, Maddal
    Supernova remnants are among the most spectacular examples of astrophysical pistons in our cosmic neighborhood. The gas expelled by the supernova explosion is launched with velocities ∼1000 km/s into the ambient, tenuous interstellar medium, producing shocks that excite hydrogen lines. We have used an optical integral-field spectrograph to obtain high-resolution spatial-spectral maps that allow us to study in detail the shocks in the northwestern rim of supernova 1006. The two-component Halpha line is detected at 133 sky locations. Variations in the broad line widths and the broad-to-narrow
    Advertised on
  • Rotation plays a key role in the life cycles of stars with masses above 8 Msun. Hence, accurate knowledge of the rotation rates of such massive stars is critical for understanding their properties and for constraining models of their evolution.This paper investigates the reliability of current methods used to derive projected rotation speeds v sin i from line-broadening signatures in the photospheric spectra of massive stars, focusing on stars that are not rapidly rotating.We use slowly rotating magnetic O-stars with well-determined rotation periods to test the Fourier transform (FT) and
    Advertised on