News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Artist’s impression of an ultra-hot Jupiter transiting its star
    An international team of astronomers, in which IAC researchers participate, have discovered barium, the heaviest element ever found in an exoplanet atmosphere. It has been discovered at high altitudes in the atmosphere of the exoplanets WASP-76 b and WASP-121 b, two ultra-hot gas giants. The unexpected discovery, made possible by the ESPRESSO instrument at the European Southern Observatory's Very Large Telescope (ESO's VLT), raises questions about what these exotic atmospheres may look like. WASP-76 b and WASP-121 b are no ordinary exoplanets. Both are referred to as ultra-hot Jupiters as
    Advertised on
  • Stephan's Quintet
    Research led by the University of Oxford and with the participation of the Instituto de Astrofísica de Canarias (IAC) has succeeded in studying, for the first time, the tiny dust molecules known as polycyclic aromatic hydrocarbons (PAHs) in the nuclear region of luminous active galaxies. This work is one of the first studies to use spectroscopic data from the James Webb Space Telescope's (JWST) mid-infrared instrument (MIRI). Observing PAH molecules in the innermost regions of the galaxy is one of the best ways to study the influence of the central black hole in the evolution of the host
    Advertised on
  • Background is a Hubble Space Telescope image of the relic galaxy, NGC 1277 (Credits: NASA, ESA, M. Beasley, and P. Kehusmaa).  Bottom-left shows the H-band spectrum of the relic galaxy, NGC 1277, obtained with the EMIR spectrograph (middle) at Gran Telescopio Canarias (left) (Credits: pictures of GTC and EMIR are from GTC website).
    Puzzling properties of massive early-type galaxies (ETGs) emerge when studying their spectra at near-infrared (NIR) wavelengths. Massive ETGs show strong CO absorption features in their H and K band spectra that cannot be explained by state-of-the-art stellar population models. For many years, the disagreement has been attributed to the presence of intermediate-age (0.1-2 Gyr) stellar populations in these galaxies, as the NIR light of intermediate-age stellar populations is dominated by cool stars (e.g. asymptotic giant branch (AGB) stars) that show strong CO absorptions in their spectrum
    Advertised on
  • Images of the article
    The prestigious journal Annual Review of Astronomy and Astrophysics invites two researchers from the Instituto de Astrofísica de Canarias (IAC) to publish an article reviewing the most important advances in the study of the magnetic fields in the outer regions of the solar atmosphere. Every year, the editorial committee of the journal Annual Review of Astronomy and Astrophysics (ARAA) meets to decide which researchers to invite to prepare their reviews, one for each field in Astrophysics. One of the 12 articles of the recently published volume 60 has been written by the IAC researchers
    Advertised on
  • Sextans A
    A recent study, led by the Centre for Astrobiology (CAB, CSIC-INTA) with participation by the Instituto de Astrofísica de Canarias (IAC) presents the first extensive sample of massive stars whose chemical composition shows a lower metal content than that of the Small Magellanic Cloud. This is a basic first step in performing an exhaustive characterization of the properties of massive stars with low metallicity. Massive stars with very low metallicity are important for interpreting the processes which took place in the early phases of the univers, such as reionization and early chemical
    Advertised on
  • Artistic impression of the BL Lac nucleus. The particle jet emerging from the black-hole follows the spiral structure of the magnetic field. In the inset the brightness variations are shown as observed in red light (2020, August).
    Active galactic nuclei (AGN) consist of a supermassive black hole fed by the circumnuclear material close to the galaxy center. Around 10% of the AGNs develop a pair of jets that are launched to the interstellar medium at speed close to velocity of light. Blazars are observed when one of the jets points very close to our line of sight, which produce an extraordinary boosting of the emission by relativistic effects. Jets produce electromagnetic emission that varies rapidly and covers from radio waves to gamma rays. The observed light is mostly random without an apparent pattern. The source BL
    Advertised on