Searching for dust orbiting around activated asteroid 596 Scheila by means of stellar occultations

Santos-Sanz, P.; Ortiz, J. L.; Duffard, R.; Morales, N.; Fernández-Valenzuela, E.; Moreno, F.; Licandro, J.; Rizos, J. L.; Maestre, J. L.; Organero, F.; Fonseca, F.; Ana, L.; Pastor, S.; de los Reyes, J. A.
Bibliographical reference

Highlights on Spanish Astrophysics IX, Proceedings of the XII Scientific Meeting of the Spanish Astronomical Society held on July 18-22, 2016, in Bilbao, Spain, ISBN 978-84-606-8760-3. S. Arribas, A. Alonso-Herrero, F. Figueras, C. Hernández-Monteagudo, A. Sánchez-Lavega, S. Pérez-Hoyos (eds.), 2017 , p. 577-577

Advertised on:
3
2017
Number of authors
14
IAC number of authors
1
Citations
0
Refereed citations
0
Description
596 Scheila is a main belt asteroid classified from 2010, when it presented cometary appearance, like a Main Belt Comet (MBC). We only known around a dozen of MBCs till to date. The MBCs present asteroid-like orbits –between Mars and Jupiter– but they have cometary appearances and/or behaviours. It is believed that the activity of Scheila was triggered by the impact of a small asteroid (D 35 m) with a velocity 5 km/s. In order to study if the dust around Scheila generated by this collision could have evolved to a thin ring orbiting the body we have predicted stellar occultations by Scheila favourable for Spain during 2015-2016. We found 3 possible favourable events for the dates: 16 December 2015, 6 January 2016 and 21 January 2016. The first event was not observed due to bad weather conditions, the second one was negative, finally, the third event was positive and was observed from two Spanish sites separated 260 km: the ‘Observatorio de Albox’ in Alicante and the ‘Observatorio de La Hita’ in Toledo. From the analysis of this positive multi-chord stellar occultation of a 14.8 magnitude star we have obtained the equivalent diameter in projected area on the sky plane of Scheila at the moment of the occultation (D = 115.1 ± 6.4 km) and its surface geometric albedo (pV = 3.67 ± 0.41 %). Due to the small-sized telescopes involved in this occultation our limit of detection for a dust ring around Scheila at 3σ is of 15 km, with a maximum optical deep τ_{max} = 0.11. The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378.