Bibcode
Badenes, C.; Mazzola, Christine; Thompson, Todd A.; Covey, Kevin; Freeman, Peter E.; Walker, Matthew G.; Moe, Maxwell; Troup, Nicholas; Nidever, David; Allende Prieto, C.; Andrews, Brett; Barbá, Rodolfo H.; Beers, Timothy C.; Bovy, Jo; Carlberg, Joleen K.; De Lee, Nathan; Johnson, Jennifer; Lewis, Hannah; Majewski, Steven R.; Pinsonneault, Marc; Sobeck, Jennifer; Stassun, Keivan G.; Stringfellow, Guy S.; Zasowski, Gail
Referencia bibliográfica
The Astrophysical Journal, Volume 854, Issue 2, article id. 147, 12 pp. (2018).
Fecha de publicación:
2
2018
Revista
Número de citas
126
Número de citas referidas
112
Descripción
We use the multi-epoch radial velocities acquired by the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) survey to perform a
large-scale statistical study of stellar multiplicity for field stars in
the Milky Way, spanning the evolutionary phases between the main
sequence (MS) and the red clump. We show that the distribution of
maximum radial velocity shifts (ΔRVmax) for APOGEE
targets is a strong function of log g, with MS stars showing
ΔRVmax as high as ∼300 {km} {{{s}}}-1,
and steadily dropping down to ∼30 {km} {{{s}}}-1 for log
g ∼ 0, as stars climb up the red giant branch (RGB). Red clump stars
show a distribution of ΔRVmax values comparable to that
of stars at the tip of the RGB, implying they have similar multiplicity
characteristics. The observed attrition of high ΔRVmax
systems in the RGB is consistent with a lognormal period distribution in
the MS and a multiplicity fraction of 0.35, which is truncated at an
increasing period as stars become physically larger and undergo mass
transfer after Roche Lobe overflow during H-shell burning. The
ΔRVmax distributions also show that the multiplicity
characteristics of field stars are metallicity-dependent, with
metal-poor ([Fe/H] ≲ ‑0.5) stars having a multiplicity
fraction a factor of 2–3 higher than metal-rich ([Fe/H] ≳
0.0) stars. This has profound implications for the formation rates of
interacting binaries observed by astronomical transient surveys and
gravitational wave detectors, as well as the habitability of
circumbinary planets.
Proyectos relacionados
Abundancias Químicas en Estrellas
La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
Carlos
Allende Prieto