Ultra diffuse galaxies (UDGs) have the sizes of giants but the luminosities of dwarfs. A key to understanding their origins comes from their total masses, but their low surface brightnesses (mu > 25.0) generally prohibit dynamical studies. Here we report the first such measurements for a UDG (VCC 1287 in the Virgo cluster), based on its globular cluster system dynamics and size. From 7 GCs we measure a mean systemic velocity Vsys = 1071(-15+14) km/s, thereby confirming a Virgo-cluster association. We measure a velocity dispersion of 33(-10+16) km/s within 8.1 kpc, corresponding to an enclosed mass of (4.5 ± 2.8) x 10^9 solar masses and a g-band mass-to-light ratio of (M/L)g = 106(-54+125). From the cumulative mass curve, along with the GC numbers, we estimate a virial mass of ~8 x 10^10 solar masses, yielding a dark-to-stellar mass fraction of ~3000. We show that this UDG is an outlier in stellar mass-halo mass relations, suggesting extreme stochasticity in relatively massive star-forming halos in clusters. Finally, we discuss how counting GCs offers an efficient route to determining virial masses for UDGs.
Advertised on
References
It may interest you
-
The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy's total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxiesAdvertised on
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on
-
It is well known that fullerenes – big, complex, and highly resistant carbon molecules with potential applications in nanotechnology – are mostly seen in planetary nebulae (PNe); old dying stars with progenitor masses similar to our Sun. Fullerenes, like C60 and C70, have been detected in PNe whose infrared (IR) spectra are dominated by broad unidentified IR (UIR) plateau emissions. The identification of the chemical species (structure and composition) responsible for such UIR emission widely present in the Universe is a mystery in astrochemistry; although they are believed to be carbon-richAdvertised on