Historically, globular clusters (GCs) have been used as laboratories for studying stellar evolution, because it was thought that all the stars in a globular cluster formed at the same time and thus have the same age. However since a couple of decades ago it has been known that almost all the globular clusters contain several stellar populations. In the first generation the chemical abundances, for example those of elements such as Al and Mg, show the composition of the original interstellar (or intra-cluster) medium. In the short time (astronomically) of only 500 million years the medium is contaminated and from this medium the second generation of stars is formed. It is thought that some of the most massive stars (i.e., supermassive stars, rapidly rotating massive stars, massive interacting binaries, and massive AGB stars) in the first generation produce and destroy the heavy elements in their interiors (“nucleosynthesis”) and by rapid mass loss contaminate the interstellar medium where the second generation of stars then forms with different chemical abundances. The production of Al and the destruction of Mg in the interiors of stars is very sensitive to their temperature and overall metallicity, so they offer a good diagnostic to unveil the nature of the contaminating stars. Here we have combined the Al and Mg abundances in five GCs observed by the APOGEE survey with the nucleosynthesis models in massive AGB (asymptotic giant branch) stars (which produce these elements in their interiors, and then eject them during a phase of extremely rapid mass loss). We are able to reproduce for the first time the Al-Mg anticorrelations in these five globular clusters, spanning very different metallicities. This finding supports the idea that massive AGB stars were the key players in the pollution of the intra-cluster medium, from which additional generations of stars formed in GCs.
Advertised on
References
It may interest you
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on