We are now in an era of large spectroscopic surveys of OB-type stars. Quantitative spectroscopic analysis of these modern datasets is enabling us to review the physical properties of blue massive stars with robust samples, not only revisiting mean properties and general trends, but also incorporating information about the effects of second-order parameters. We investigate the spectral type -- effective temperature (SpT - Teff) calibration for O-type dwarfs, and its claimed dependence on metallicity, using statistically-meaningful samples of stars extracted from the IACOB and VFTS surveys. We perform a homogeneous differential spectroscopic analysis of 33 Galactic and 53 LMC O dwarfs (spanning spectral types of O4 - O9.7) using the IACOB-GBAT package, a chi-square-fitting algorithm based on a large pre-computed grid of FASTWIND models, and standard techniques for the hydrogen/helium analysis of O-type stars. We compare the estimated effective temperatures and gravities as a function of (internally consistent) spectral classifications. While the general trend is that the temperature of a star increases with earlier spectral types and decreasing metallicity, we show that the large range of gravities found for O-type dwarfs -- spaning up to 0.45-0.50 dex in some spectral bins -- plays a critical role on the dependence of the effective temperature calibrations as a function of spectral type and metallicity. This result warns us about the use of SpT - Teff calibrations for O-dwarfs which ignore the effects of gravity, and highlights the risks of employing calibrations based on small samples. The effects of this scatter in gravities (evolutionary status) for O-type dwarfs should be included in future recipes which employ SpT - Teff calibrations.
Advertised on
References
It may interest you
-
The universality of the stellar initial mass function (IMF) is one of the most widespread assumptions in modern Astronomy and yet, it might be flawed. While observations in the Milky Way generally support an IMF that is invariant with respect to the local conditions under which stars form, measurements of massive early-type galaxies systematically point towards a non-universal IMF. To bridge the gap between both sets of evidence, in this work we measured for the first time the low-mass end of the IMF from the integrated spectra of a Milky Way-like galaxy, NGC3351. We found that the slope ofAdvertised on
-
In the 90s, the COBE satellite discovered that not all the microwave emission from our Galaxy behaved as expected. Part of this signal was later assigned to a fresh new emission component, spatially correlated with the Galactic dust emission, which showed greater importance in the microwave range of frequencies. It has been named since as “anomalous microwave emission”, or AME. The current main hypothesis to explain the AME origin is that it is emitted by small dust particles which undergo fast spinning movements. In Fernández-Torreiro et al. (2023), we study the observational properties ofAdvertised on
-
The properties of blue supergiants are key for constraining the end of the main sequence phase, a phase during which massive stars spend most of their lifetimes. The lack of fast-rotating stars below 21.000K, a temperature around which stellar winds change in behaviour, has been proposed to be caused by enhanced mass-loss rates, which would spin down the star. Alternatively, the lack of fast-rotating stars may be the result of stars reaching the end of the main sequence. Here, we combine newly derived estimates of photospheric and wind parameters, wind terminal velocities from the literatureAdvertised on