During the last decades, growing evidence about the presence of planetary material around white dwarfs has been established. The features of heavy elements in the spectra of a large fraction (25-50%) of these objects needs a frequent accretion of material orbiting close to the white dwarf. Additionally, at least 4% of these objects are known to host dusty disks. The space mission K2, that re-uses the Kepler instrument after a failure of two of its four gyroscopes, recently detected transiting material around WD1145+017, with periods in the 4.5-5h range, and a depth variability with scales of a few days. This is attributed to the presence of disintegrating planetesimals, due to the high temperatures close to the white dwarf. The K2 data suffer from a poor sampling to study this object (30 min), and they lack chromatic information. In this work, we used the IAC80 telescope to predict deep transits that were observed a few hours later with OSIRIS at GTC. The close to 1-min sampling, and the information in four visible bands, allowed for the first detection, with an unprecedented precision, of the color of the transiting material. The lack of depth changes in the different bands (gray transits) served to set constraints to the minimal particle sizes of the transiting material, which have to be 0.5 microns or larger for the most common minerals.
Advertised on
References
It may interest you
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on
-
The existence of dark matter is probably one of the fundamental mysteries of modern science and unraveling its nature has become one of the primary goals of modern Physics. Despite representing 85% of all matter in the Universe, we do not know what it is. In its simplest description, it is made up of particles that interact with each other and with ordinary matter only through gravity. However, this description does not correspond to any physical model. Finding out what dark matter is requires finding evidence of some kind of interaction of dark matter that goes beyond gravity. In our workAdvertised on
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on