We present photometric and spectroscopic observations of the members of three previously cataloged compact group (CG) candidatesat redshifts $z>0.3$. These confirm spectroscopic redshifts compatiblewith being gravitationally bound structures at redshifts 0.3112, 0.3848and 0.3643 respectively, and then they are the most distant CGs known with spectroscopic confirmation for all their members. The morphological and spectroscopic properties of all their galaxies indicate early types dominated by an old population of stars, with little star formation or nuclear activity. Most of the physical properties derived for the three groups are quite similar to the average properties of CGs at lower redshifts. In particular, from the velocities and positions of the respective members of each CG, we estimate short dynamic times. These leave open the questions of identifying the mechanism for forming CGs continuously and the nature of the final stages of these structures.
It may interest you
-
Active galactic nuclei (AGN) consist of a supermassive black hole fed by the circumnuclear material close to the galaxy center. Around 10% of the AGNs develop a pair of jets that are launched to the interstellar medium at speed close to velocity of light. Blazars are observed when one of the jets points very close to our line of sight, which produce an extraordinary boosting of the emission by relativistic effects. Jets produce electromagnetic emission that varies rapidly and covers from radio waves to gamma rays. The observed light is mostly random without an apparent pattern. The source BL
Advertised on -
Classical novae are cataclysmic binary star systems in which the matter of a companion star is accreted on a white dwarf. Accumulation of hydrogen in a layer eventually causes a thermonuclear explosion on the surface of the white dwarf, brightening the white dwarf to ~100.000 solar luminosities and triggering ejection of the accumulated matter. Novae provide the extreme conditions required to accelerate particles, electrons or protons, to high energies. Here we present the detection of gamma rays by the MAGIC telescopes from the 2021 outburst of RS Ophiuchi, a recurrent nova with a red giant
Advertised on -
Many of the most basic and important physical phenomena are determined by a set of “fundamental constants”, whose values are experimentally known to high accuracy. A key aspect is to know whether they are “universal constants”, i.e., whether they have always had the same value across the Universe and throughout its history. Here we made use of data from the ESPRESSO spectrograph on the Very Large Telescope (VLT) in order to determine the value of the fine structure constant 8 thousand million years ago (when the Universe was just 40% its current age) by measuring spectral transitions in a
Advertised on