The solar coronal heating problem originated almost 80 years ago and remains unsolved. A plausible explanation lies in mechanisms based on magnetic wave energy dissipation. Currently, several linear and nonlinear wave damping models have been proposed. The advent of space instrumentation has led to the creation of catalogues containing the properties of a large number of loop oscillation events. When the damping ratio of the oscillations is plotted against their oscillation amplitude, the data are scattered forming a cloud with a triangular shape. Larger amplitudes correspond in general to smaller damping ratio values and vice versa. Here, a Bayesian model comparison analysis has quantified the evidence for a nonlinear damping model relative to the evidence for linear resonant absorption in explaining the observed damping of coronal loop oscillations. The results indicate that there is qualitative agreement between the regions of high marginal likelihood and Bayes factor for the nonlinear damping model and the arrangement of observed data. A quantitative application to 101 loop oscillation cases observed with the Solar Dynamics Observatory (SDO, NASA) results in the marginal likelihood for the nonlinear model being larger in the majority of them. Moreover, the cases with conclusive evidence for the nonlinear model outnumber considerably those in favor of linear resonant absorption. Nonlinear damping is therefore a plausible explanation for the observed damping of solar coronal waves.
It may interest you
-
Research led by the University of Oxford and with the participation of the Instituto de Astrofísica de Canarias (IAC) has succeeded in studying, for the first time, the tiny dust molecules known as polycyclic aromatic hydrocarbons (PAHs) in the nuclear region of luminous active galaxies. This work is one of the first studies to use spectroscopic data from the James Webb Space Telescope's (JWST) mid-infrared instrument (MIRI). Observing PAH molecules in the innermost regions of the galaxy is one of the best ways to study the influence of the central black hole in the evolution of the host
Advertised on -
A recent study, led by the Centre for Astrobiology (CAB, CSIC-INTA) with participation by the Instituto de Astrofísica de Canarias (IAC) presents the first extensive sample of massive stars whose chemical composition shows a lower metal content than that of the Small Magellanic Cloud. This is a basic first step in performing an exhaustive characterization of the properties of massive stars with low metallicity. Massive stars with very low metallicity are important for interpreting the processes which took place in the early phases of the univers, such as reionization and early chemical
Advertised on -
The eighth edition of the international summer school for teachers "Astronomy Education Adventure in the Canary Islands" will take place from 24 to 29 July in Tenerife and will focus on the relationship between Astronomy and the Sustainable Development Goals. The Instituto de Astrofísica de Canarias (IAC), together with other scientific and educational institutions, organises the eighth edition of the international school for teachers "Astronomy Education Adventure in the Canary Islands" (AEACI) which this year will be dedicated to "Astronomy for Sustainable Development" on the occasion of
Advertised on