V404 Cygni is a black hole within a binary system where a black hole of around 10 times the mass of the Sun is swallowing material from a very nearby star. During this process material falls onto the black hole and forms an accretion disc, whose hotter, innermost zones emit in X-rays. On June 2015 V404 Cygni went into outburst after a quiescence of over 25 years. During this period its brightness increased on million fold in a few days, becoming the brightest X-ray source in the sky. Optical observations carried out with the GTC 10.4m discovered the presence of a wind of cold material, which is formed in the outer layers of the accretion disc, regulating the accretion of material by the black hole. This wind, detected for the first time in a system of this type, has a very high velocity (3,000 kilometres per second) so that it can escape from the gravitational field around the black hole. At the end of this outburst the GTC observations revealed the presence of a nebula formed from material expelled by the wind (dubbed nebular phase). This phenomenon, which has been observed for the first time in a black hole, also allows us to estimate the quantity of mass ejected into the interstellar medium (see Figure).
Advertised on
References
It may interest you
-
The universality of the stellar initial mass function (IMF) is one of the most widespread assumptions in modern Astronomy and yet, it might be flawed. While observations in the Milky Way generally support an IMF that is invariant with respect to the local conditions under which stars form, measurements of massive early-type galaxies systematically point towards a non-universal IMF. To bridge the gap between both sets of evidence, in this work we measured for the first time the low-mass end of the IMF from the integrated spectra of a Milky Way-like galaxy, NGC3351. We found that the slope ofAdvertised on
-
Light bridges are elongated and bright structures protruding into the umbra of sunspots. The presence of light bridges has a significant role in the evolution of sunspots and the heating of their overlying atmosphere. Therefore, investigating these structures is crucial to understanding fundamental aspects of sunspots. By applying a novel code based on deep-learning algorithms called SICON to spectropolarimetric observations acquired with the Hinode satellite, we computed atmospheric parameters that allowed us to infer the variation of the physical properties of light bridges on a geometricAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on