Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses per year. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
It may interest you
-
Stellar ages are key to several fields of astrophysics such as exoplanet research, galactic-archeology, and of course stellar physics. Obtaining the ages of stars is however not straightforward and requires stellar modeling. The most widely used technique only requires stellar colors or temperature and surface gravity, but the uncertainties are quite large. This technique is most efficient for stars belonging to clusters, as they were born from the same molecular cloud and share the same ages. In the last decades, based on the study of stellar acoustic waves, asteroseismology became the most
Advertised on -
Almost a decade after starting observations of the sky in the northern hemisphere, the QUIJOTE Collaboration has presented an initial series of 6 scientific articles, giving the most accurate description we have of the polarization of the emission of the Milky Way in the microwave range. This is a window of observation not previously explored, which provides complementary information to that obtained previously by space missions (Planck and WMAP) dedicated to the study of the cosmic microwave background radiation (CMB), the fossil radiation left behind by the Big Bang. The new results allow
Advertised on -
The standard cosmological model states that massive galaxies contain a large fraction of dark matter. Dark matter is a transparent substance that does not interact through regular baryonic matter and is only detected through its gravitational pull over the stars and the gas. NGC 1277 is known as the prototype of a relic galaxy, that is, a galaxy that has not accreted other galaxies since it formed. Relic galaxies are extremely rare and are the untouched remains of the giant galaxies that populated the early Universe. Since relic galaxies are very important to understand the conditions in the
Advertised on