This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.
-
-
The so-called extreme trans-Neptunian objects (ETNOs) are orbiting the Sun at heliocentric distances larger than 150 AUs, and their discovery a decade ago was soon recognized as a turning point in our knowledge of the outer Solar System. The currently tally stands at 21 ETNOs, and only one, Sedna, has been spectroscopically observed. In the last years several studies have suggested that the dynamical properties of the ETNOs could be better explained if one or several planets of several Earth masses are orbiting the Sun at hundreds of AUs. In 2016, Brown and Batygin used the orbits of sevenAdvertised on
-
The first billion years of cosmic history represents the final frontier in assembling a coherent physical picture of early galaxy formation, and a remarkable progress in this area has been made in the last few years. We have carried out a detailed analysis of a gravitationally lensed galaxy A2744_YD4 at z = 8.38 behind the massive galaxy cluster Abell 2744. The photometric redshift of about 8, estimated from HST, VLT and Spitzer data, was confirmed by the detection of the Ly_alpha line at a redshift of z=8.38 in a deep VLT X-SHOOTER spectrum. The follow-up observations with the Atacama LargeAdvertised on
-
In the phenomenon of gravitational lensing, predicted by Einstein's General Theory of Relativity, the mass of a galaxy acts on the light of a more distant object, as if it were a huge lens, producing a distorted image with the form of a so-called Einstein ring or multiple images and a magnification of the total flux, allowing to see details which would otherwise be too faint to detect. GTC/OSIRIS spectroscopic observations allowed to discover one of the brightest galaxies in the early Universe, BG1429+1202, located at a redshift of 2.82 (we see it as it was some 2,300 million years after theAdvertised on
-
-
We report the discovery of a new super-Earth orbiting the nearby cool dwarf star GJ 625 in the inner edge of the habitable zone. This result has been achieved thanks to the analysis of the radial velocity (RV) time series from the HARPS-N spectrograph, in particular, 151 HARPS-N measurements taken over 3.5 yr. The planet GJ 625 b has a mass of roughly 2.8 Earth masses and an orbital period of ~14.6 days at a distance of ~0.08 AU of its host star. The star GJ 625 is a low-activity M dwarf star located at 6.5 pc (~21 light years) from the Sun, with a stellar rotation period in the range 75-85Advertised on