News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • On Friday night, 15 February, asteroid 2012 DA14 maked a close approach to our planet. In Spain, it first was seen from the peninsula at 21:00 local time (UT 20:00*) and half-an-hour later it was visible from the Canaries at 20:30 local time (UT 20:30). It was the closest approach by an asteroid since we have been able to predict their orbits. The IAC will show direct time-lapse videos on this page, as well as links to retransmissions. (*) In winter Universal Time (UT) coincides with local Canarian time. Uno de los vídeos ha sido seleccionado como Astronomical Image of the Day JUST TO GIVE
    Advertised on
  • Artistic view of the system Swift J1357.2-0933. The vertical structure present in the inner accretion disc produces the optical dips with a periodicity of a few minutes whereas the orbital period is 2.8h. G. Pérez (SMM/IAC).
    Stellar-mass black holes (BHs) are mostly found in X-ray transients, a subclass of X-ray binaries that exhibit violent outbursts. None of the ~50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2−093313 is a very faint X-ray transient detected in 2011 by the Swift telescope. Our spectroscopic evidences show that it contains a BH in a 2.8h orbital period. High-time resolution optical light curves display profound dips of up to 0.8 mag (50% of the optical flux) in 2min without X-ray counterparts. The observed properties are best
    Advertised on
  • Constraints on stellar rotation and planet mass. The dark-red and light-red regions are the 1-σ and 2- σ seismic constraints on stellar rotation in the plane (Ω / ΩSun) - (sin i), where Ω is the bulk angular velocity, ΩSun / 2 π= 0.424 μHz is the solar Ca
    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD52265, a CoRoT prime target known to host a planetary companion. These seismic inferences are remarkably consistent with an independent
    Advertised on