News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Dust continuum emission at 694 GHz (432 μm) mapped by ALMA in the CND of NGC 1068. The right panel shows a close-up of the dust continuum emission shown in left panel.
    NGC 1068 is the prototypical Seyfert 2 galaxy and a prime example for active galactic nuclei (AGN) unifying schemes. Its central engine is thought to be hidden behind a screen of obscuring material located in a dusty molecular torus of a few parsecs size. Given the distance to the galaxy (D ∼ 14 Mpc), it has been the subject of tens of studies aiming to disentangle what is happening in its central parsecs. We used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6–5) molecular line and the 432 μm continuum emission from the 300 pc sized circumnuclear disk (CND) of the
    Advertised on
  •  Left panel: SINFONI data cube collapsed in the spectra dimension, where bot the interloper and Aql X-1 are clearly resolved. Right panel: averaged, normalized spectra obtained for each object.
    Low mass X-ray binaries consist of two components: a compact object (either a neutron star or a stellar-mass black hole) and a star with a mass similar or lower to that of the Sun. Both objects are close enough for the gravity to strip material from the companion star, which fall onto the compact object forming an accretion disc. Indeed, both objects are so close (typically less than three times the orbit of Mercury) that not even the most powerful telescope can spatially resolve them. Aquila X-1 (Aql X-1) is a canonical X-ray binary harbouring a neutron star. Since its discovery 40 years
    Advertised on
  • Strength of the large-scale magnetic field in nearby galaxies vs. their rotation speed.
    Magnetic fields are present on all scales in the Universe from planets and stars to galaxies and galaxy clusters, and even at high redshifts. They are important for the continuation of life on the Earth, the onset of star formation, the order of the interstellar medium, and the evolution of galaxies. Hence, understanding the Universe without understanding magnetic fields is impossible. The origin and evolution of cosmic magnetic fields is among the most pressing questions in modern astronomy. The most widely accepted theory to explain the magnetic fields on stars and planets is the α-Ω
    Advertised on
  • Oxygen and chlorine abundances in low-mass planetary nebulae (PNe) (black dots, from Delgado-Inglada et al. 2015) versus the new AGB model predictions for different masses (a few relevant masses are marked) and metallicities. The new models predict that O
    Recently, Delgado-Inglada and collaborators have shown that low-mass (between one and three times the mass of the Sun) planetary nebulae are rich in oxygen, but the standard theoretical models do not predict this. In this work we explain this phenomenon for the first time using theoretical models of nucleosynthesis (production of chemical elements in the interiors of stars) in their precursor AGB stars, which include convective processes, (which transport chemical elements created in the interior to the surface of the star) more efficient than in the standard models. This discovery calls
    Advertised on
  • Edge-on I-band images for the flared and non-flared models. Intermediate panels: The same for the face-on discs. Bottom panels: Surface brightness profiles in the major axis of the galaxy for edge-on (left) and the face-on (right) views of the two models
    Previous numerical studies had apparently ruled out the possibility that flares in galaxy discs could give rise to the apparent breaks in their luminosity profiles when observed edge-on. However the studies have not, until now, analysed this hypothesis systematically using realistic models for the disc, the flare, and the bulge. We revisit this theme by analysing a series of models which sample a wide range of observationally based structural parameters for these three components. Using observational data, we have considered realistic distributions of bulge-to-disc ratios, morphological
    Advertised on
  • A graph of the results of the study, showing the relative abundances of Al and Mg relative to Fe for the evolved stars in the globular cluster M3. We can see an anticorrelation between Al and Mg for the stars in the cluster (black filled circles). The pre
    Historically, globular clusters (GCs) have been used as laboratories for studying stellar evolution, because it was thought that all the stars in a globular cluster formed at the same time and thus have the same age. However since a couple of decades ago it has been known that almost all the globular clusters contain several stellar populations. In the first generation the chemical abundances, for example those of elements such as Al and Mg, show the composition of the original interstellar (or intra-cluster) medium. In the short time (astronomically) of only 500 million years the medium is
    Advertised on