News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Supermassive black holes in active galaxies show accretion states similar to those seen in stellar-mass black holes in our galaxy. Credit: Teo Muñoz Darias/Juan A. Fernández Ontiveros
    The researchers Juan A. Fernández-Ontiveros, of the Istituto Nazionale di Astrofisica (INAF) in Rome and Teo Muñoz-Darias, of the Instituto de Astrofísica de Canarias (IAC), have written an article in which they describe the different states of activity of a large sample of supermassive black holes in the centres of galaxies. They have classified them using the behaviour of their closest “relations”, the stellar mass black holes in X-ray binaries. The article has just been published in the journal Monthly Notices of the Royal Astronomical Society (MNRAS).
    Advertised on
  • Graphic representation of the precessing warp of the Milky Way disc. Credit: Gabriel Pérez Díaz, SMM (IAC).
    An investigation carried out by the astrophysicists of the Instituto de Astrofísica de Canarias (IAC) Žofia Chrobáková, a doctoral student at the IAC and the University of La Laguna (ULL), and Martín López Corredoira, questions one of the most interesting findings about the dynamics of the Milky Way in recent years: the precession, or the wobble in the axis of rotation of the disc warp is incorrect. The results have just been published in The Astrophysical Journal.
    Advertised on
  • Astronomy Picture of the Day (APOD) on February 27th 2020
    A recent study analyses data collected at 44 of the darkest places in the world, including the Canary Island Observatories, to develop the first complete reference method to measure the natural brightness of the night sky using low-cost photometers. Of the 44 photometers in the survey, the Roque de los Muchachos Observatory (Garafía, La Palma, Canary Islands) stands out at the darkest of all the skies analysed. The night sky is not completely dark; even in the remotest places there is a glow in the sky produced by natural components, both terrestrial and extraterrestrial, and by artificial
    Advertised on
  • Evolution of large-scale structure as calculated by supercomputers. The boxes show how filaments and superclusters of galaxies grow over time, from billions of years after the Big Bang to current structures. Credit: Modification of work by CXC/MPE/V. Springel
    The detection of the axion would mark a key episode in the history of science. This hypothetical particle could resolve two fundamental problems of Modern Physics at the same time: the problema of Charge and Parity in the strong interaction, and the mystery of dark matter. However, in spite of the high scientific interest in finding it, the search at high radio frequency -above 6 GHz- has been almost left aside for the lack of the high sensitivity technology which could be built at reasonable cost. Until now.
    Advertised on
  • Artistic impression of the super-Earth in orbit round the red dwarf star GJ-740. Credit: Gabriel Pérez Díaz, SMM (IAC).
    In recent years there has been an exhaustive study of red dwarf stars to find exoplanets in orbit around them. These stars have effective surface temperatures between 2400 and 3700 K (over 2000 degrees cooler than the Sun), and masses between 0.08 and 0.45 solar masses. In this context, a team of researchers led by Borja Toledo Padrón, a Severo Ochoa-La Caixa doctoral student at the Instituto de Astrofísica de Canarias (IAC), specializing in the search for planets around this type of stars, has discovered a super-Earth orbiting the star GJ 740, a red dwarf star situated some 36 light years
    Advertised on
  • HST imaging and narrow and broad components ALMA maps of ID2299 (adapted from Puglisi et al. 2021).
    Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses
    Advertised on