News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • The anti-correlation between the amount of metals and the star formation rate when comparing galaxies with similar stellar mass. Galaxies with more (lower image) and less (upper image) star-forming regions (the blue clumps) are shown.

    The so-called "fundamental metallicity relation" (FMR) has been known for almost 10 years, and it states that galaxies of the same stellar mass but larger star formation rate have more chemically primitive gas. It is thought to be fundamental because it naturally arises from the stochastic feeding of star-formation from external metal-poor gas accretion, a process extremely elusive to observe but essential according the cosmological simulations of galaxy formation. Galaxies transform gas into stars at a rate that quickly exhaust their gas reservoir. Therefore, a continuous supply of external

    Advertised on
  • Line profiles showing the blueshifted broad components of the ionized/molecular outflow. Fits to the broad (blue), narrow (red), continuum (orange), and total (green) components are shown (shaded areas were used in the determination of the outflow sizes).

    The supermassive black holes in the centres of galaxies have a basic influence on their evolution. This happens during a phase in which the black hole is consuming the material of the galaxy in which it resides at a very high rate, growing in mass as it does so. During this phase we say that the galaxy has an active nucleus (AGN, for active galactic nucleus). The effect that this activity has on the host galaxy is known as AGN feedback, and one of its forms are galactic winds: gas from the centre of the galaxy being driven out by the energy released by the active nucleus. These winds can

    Advertised on
  • The ultra-diffuse galaxy KKS2000]04 (NGC1052-DF2), towards the constellation of Cetus, considered previously a galaxy with no dark matter.

    The claimed detection of a diffuse galaxy lacking dark matter represents a possible challenge to our understanding of the properties of these galaxies and galaxy formation in general. The galaxy, already identified in photographic plates taken in the summer of 1976 at the UK 48-in Schmidt telescope, presents normal distance-independent properties (e.g. colour, velocity dispersion of its globular clusters). However, distance-dependent quantities are at odds with those of other similar galaxies, namely the luminosity function and sizes of its globular clusters, mass-to-light ratio, and dark

    Advertised on
  • Artistic recreation of the Teegarden Star system.

    An international team led by the University of Göttingen (Germany) with participation by researchers from the Instituto de Astrofísica de Canarias (IAC) have discovered, using the CARMENES high resolution spectrograph at the Calar Alto Observatory (Almería) two new planets like the Earth around one of the closest stars within our Galactic neighbourhood.

    Advertised on
  • MASCARA-2B/KELT-20b

    The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

    Advertised on