Bibcode
Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.
Bibliographical reference
Astronomische Nachrichten, Vol.333, Issue 9, p.796
Advertised on:
11
2012
Citations
167
Refereed citations
147
Description
The 1.5 m telescope GREGOR opens a new window to the understanding of
solar small-scale magnetism. The first light instrumentation includes
the Gregor Fabry Pérot Interferometer (GFPI), a filter
spectro-polarimeter for the visible wavelength range, the GRating
Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The
excellent performance of the first two instruments has already been
demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest
solar telescope and number 3 in the world. Its all-reflective Gregory
design provides a large wavelength coverage from the near UV up to at
least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR
is equipped with a high-order adaptive optics system, with a subaperture
size of 10 cm, and a deformable mirror with 256 actuators. The science
goals are focused on, but not limited to, solar magnetism. GREGOR allows
us to measure the emergence and disappearance of magnetic flux at the
solar surface at spatial scales well below 100 km. Thanks to its
spectro-polarimetric capabilities, GREGOR will measure the interaction
between the plasma flows, different kinds of waves, and the magnetic
field. This will foster our understanding of the processes that heat the
chromosphere and the outer layers of the solar atmosphere. Observations
of the surface magnetic field at very small spatial scales will shed
light on the variability of the solar brightness.
Related projects
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García