Chromospheric Heating by Magnetohydrodynamic Waves and Instabilities

Srivastava, A. K.; Ballester, J. L.; Cally, P. S.; Carlsson, M.; Goossens, M.; Jess, D. B.; Khomenko, E.; Mathioudakis, M.; Murawski, K.; Zaqarashvili, T. V.
Bibliographical reference

Journal of Geophysical Research (Space Physics)

Advertised on:
6
2021
Description
The importance of the chromosphere in the mass and energy transport within the solar atmosphere is now widely recognized. This review discusses the physics of magnetohydrodynamic waves and instabilities in large-scale chromospheric structures as well as in magnetic flux tubes. We highlight a number of key observational aspects that have helped our understanding of the role of the solar chromosphere in various dynamic processes and wave phenomena, and the heating scenario of the solar chromosphere is also discussed. The review focuses on the physics of waves and invokes the basics of plasma instabilities in the context of this important layer of the solar atmosphere. Potential implications, future trends and outstanding questions are also delineated.
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes

The general aim of this project is the investigation of astrophysical processes through the use of state­of­the­art numerical codes on massively parallel computers. More specifically, the research in many astrophysical fields requires an understanding of gas dynamical, magnetic, radiative transfer and gravitational phenomena not accessible to

Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García