C/O vs. Mg/Si ratios in solar type stars: The HARPS sample

Suárez-Andrés, L.; Israelian, G.; González Hernández, J. I.; Adibekyan, V. Zh.; Delgado Mena, E.; Santos, N. C.; Sousa, S. G.
Bibliographical reference

Astronomy and Astrophysics, Volume 614, id.A84, 8 pp.

Advertised on:
6
2018
Number of authors
7
IAC number of authors
7
Citations
37
Refereed citations
32
Description
Context. Aims: We aim to present a detailed study of the magnesium-to-silicon and carbon-to-oxygen ratios (Mg/Si and C/O) and their importance in determining the mineralogy of planetary companions. Methods: Using 499 solar-like stars from the HARPS sample, we determined C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets (<30 M⊙) and high-mass planets (>30 M⊙) to test for a possible relation with the mass. Results: We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O can determine different composition of planets formed. We found that 100% of our planetary sample present C/O < 0.8. 86% of stars with high-mass companions present 0.8 > C/O > 0.4, while 14% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between one and two, while 85% of the high-mass companion sample does. The other 15% showed Mg/Si values below one. No stars with planets were found with Mg/Si > 2. Planet hosts with low-mass companions present C/O and Mg/Si similar to those found in the Sun, whereas stars with high-mass companions have lower C/O. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A84
Related projects
Project Image
Observational Tests of the Processes of Nucleosynthesis in the Universe

Several spectroscopic analyses of stars with planets have recently been carried out. One of the most remarkable results is that planet-harbouring stars are on average more metal-rich than solar-type disc stars. Two main explanations have been suggested to link this metallicity excess with the presence of planets. The first of these, the “self

Garik
Israelian