Design of an adaptable Stokes polarimeter for exploring chromospheric magnetism

Louis, R. E.; Bayanna, A. R.; Socas Navarro, H.
Bibliographical reference

Advances in Space Research, Volume 60, Issue 7, p. 1547-1556.

Advertised on:
The chromosphere is a highly complex and dynamic layer of the Sun, that serves as a conduit for mass and energy supply between two, very distinct regions of the solar atmosphere, namely, the photosphere and corona. Inferring magnetic fields in the chromosphere, has thus become an important topic, that can be addressed with large-aperture solar telescopes to carry out highly sensitive polarimetric measurements. In this article, we present a design of a polarimeter for investigating the chromospheric magnetic field. The instrument consists of a number of lenses, two ferro-electric liquid crystals, a Wollaston prism, and a CCD camera. The optical design is similar to that of a commercial zoom lens which allows a variable f# while maintaining focus and aberrations well within the Airy disc. The optical design of the Adaptable ChRomOspheric POLarimeter (ACROPOL) makes use of off-the-shelf components and is described for the 70 cm Vacuum Tower Telescope and the 1.5 m GREGOR telescope at Observatorio del Teide, Tenerife, Spain. Our design shows that the optical train can be separated into two units where the first unit, consisting of a single lens, has to be changed while going from the VTT to the GREGOR configuration. We also discuss the tolerances within which, diffraction limited performance can be achieved with our design.
Related projects
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics

Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the

Tanausú del
Pino Alemán