The Differences in the Torus Geometry between Hidden and Non-hidden Broad Line Active Galactic Nuclei

Ichikawa, K.; Packham, Christopher; Ramos Almeida, C.; Asensio Ramos, A.; Alonso-Herrero, Almudena; González-Martín, O.; Lopez-Rodriguez, Enrique; Ueda, Yoshihiro; Díaz-Santos, Tanio; Elitzur, Moshe; Hönig, Sebastian F.; Imanishi, Masatoshi; Levenson, Nancy A.; Mason, Rachel E.; Perlman, Eric S.; Alsip, Crystal D.
Bibliographical reference

The Astrophysical Journal, Volume 803, Issue 2, article id. 57, 12 pp. (2015).

Advertised on:
4
2015
Number of authors
16
IAC number of authors
3
Citations
98
Refereed citations
91
Description
We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.
Related projects
Infrared spectra of the central region of five quasars observed with JWST show clear differences, especially in the silicate band, which reveals the presence of hotter or cooler dust around the black hole. Credit: ESA/Hubble & NASA and C. Ramos Almeida. Composition: G. Pérez Díaz (SMM, IAC).
Nuclear Activity in Galaxies: a 3D Perspective from the Nucleus to the Outskirts
This project consists of two main research lines. First, the study of quasar-driven outflows in luminous and nearby obscured active galactic nuclei (AGN) and the impact that they have on their massive host galaxies (AGN feedback). To do so, we have been granted time with the Gran Telescopio CANARIAS (GTC) in the optical and near-infrared ranges
Cristina
Ramos Almeida
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics
Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the
Ernest
Alsina Ballester