Bibcode
Bittner, Adrian; de Lorenzo-Cáceres, Adriana; Gadotti, Dimitri A.; Sánchez-Blázquez, Patricia; Neumann, Justus; Coelho, Paula; Falcón-Barroso, Jesús; Fragkoudi, Francesca; Kim, Taehyun; Martín-Navarro, Ignacio; Méndez-Abreu, Jairo; Pérez, Isabel; Querejeta, Miguel; van de Ven, Glenn
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
2
2021
Journal
Citations
12
Refereed citations
11
Description
Inner bars are frequent structures in the local Universe and thought to substantially influence the nuclear regions of disc galaxies. In this study we explore the structure and dynamics of inner bars by deriving maps and radial profiles of their mean stellar population content and comparing them to previous findings in the context of main bars. To this end, we exploit observations obtained with the integral-field spectrograph MUSE of three double-barred galaxies in the TIMER sample. The results indicate that inner bars can be clearly distinguished based on their stellar population properties alone. More precisely, inner bars show significantly elevated metallicities and depleted [α/Fe] abundances. Although they exhibit slightly younger stellar ages compared to the nuclear disc, the typical age differences are small, except at their outer ends. These ends of the inner bars are clearly younger compared to their inner parts, an effect known from main bars as orbital age separation. In particular, the youngest stars (i.e. those with the lowest radial velocity dispersion) seem to occupy the most elongated orbits along the (inner) bar major axis. We speculate that these distinct ends of bars could be connected to the morphological feature of ansae. Radial profiles of metallicity and [α/Fe] enhancements are flat along the inner bar major axis, but show significantly steeper slopes along the minor axis. This radial mixing in the inner bar is also known from main bars and indicates that inner bars significantly affect the radial distribution of stars. In summary, based on maps and radial profiles of the mean stellar population content and in line with previous TIMER results, inner bars appear to be scaled down versions of the main bars seen in galaxies. This suggests the picture of a `galaxy within a galaxy', with inner bars in nuclear discs being dynamically equivalent to main bars in main galaxy discs.
Related projects

Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu

Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro
![Teacup in [O III] and CO(2-1) Supermassive black holes modify the distribution of molecular gas in the central regions of galaxies. Credit: HST and C. Ramos Almeida.](/sites/default/files/styles/crop_square_2_2_to_320px/public/images/project/teacup_english.001.jpeg?itok=dF4bDw-q)
Nuclear Activity in Galaxies: a 3D Perspective from the Nucleus to the Outskirts
This project consists of two main research lines. First, the study of quasar-driven outflows in luminous and nearby obscured active galactic nuclei (AGN) and the impact that they have on their massive host galaxies (AGN feedback). To do so, we have obtained Gran Telescopio CANARIAS (GTC) infrared and optical observations with the instruments
Cristina
Ramos Almeida