On The Magnetic-Field Diagnostics Potential of SDO/HMI

Fleck, Bernard; Hayashi, K.; Rezaei, R.; Vitas, N.; Centeno, R.; Cheung, M.; Couvidat, S.; Fischer, C.; Steiner, O.; Straus, T.; Viticchie, B.
Bibliographical reference

American Astronomical Society, AAS Meeting #220, #207.01

Advertised on:
5
2012
Number of authors
11
IAC number of authors
0
Citations
0
Refereed citations
0
Description
The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the magnetic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173 Å. We use the output of three high-resolution 3D, time-dependent, radiative magneto-hydrodynamics simulations (two based on the MURaM code, one on the CO5BOLD code) to calculate Stokes profiles for the Fe I 6173 Å line for snapshots of a sunspot, a plage area and an enhanced network region. Stokes filtergrams are constructed for the 6 nominal HMI wavelengths by multiplying the Stokes profiles with a representative set of HMI filter response functions. The magnetic field vector B(x,y) and line-of-sight Doppler velocities V(x,y) are determined from these filtergrams using a simplified version of the HMI magnetic field processing pipeline. Finally, the reconstructed magnetic field B(x,y) and line-of-sight velocity V(x,y) are compared to the actual magnetic field B0(x,y,z) and vertical velocity V0(x,y,z) in the simulations.