Bibcode
Costantin, Luca; Pérez-González, Pablo G.; Guo, Yuchen; Buttitta, Chiara; Jogee, Shardha; Bagley, Micaela B.; Barro, Guillermo; Kartaltepe, Jeyhan S.; Koekemoer, Anton M.; Cabello, Cristina; Corsini, Enrico Maria; Méndez-Abreu, Jairo; de la Vega, Alexander; Iyer, Kartheik G.; Bisigello, Laura; Cheng, Yingjie; Morelli, Lorenzo; Arrabal Haro, Pablo; Buitrago, Fernando; Cooper, M. C.; Dekel, Avishai; Dickinson, Mark; Finkelstein, Steven L.; Giavalisco, Mauro; Holwerda, Benne W.; Huertas-Company, Marc; Lucas, Ray A.; Papovich, Casey; Pirzkal, Nor; Seillé, Lise-Marie; Vega-Ferrero, Jesús; Wuyts, Stijn; Yung, L. Y. Aaron
Bibliographical reference
Nature
Advertised on:
11
2023
Journal
Citations
20
Refereed citations
15
Description
The majority of massive disk galaxies in the local Universe show a stellar barred structure in their central regions, including our Milky Way1,2. Bars are supposed to develop in dynamically cold stellar disks at low redshift, as the strong gas turbulence typical of disk galaxies at high redshift suppresses or delays bar formation3,4. Moreover, simulations predict bars to be almost absent beyond z = 1.5 in the progenitors of Milky Way-like galaxies5,6. Here we report observations of ceers-2112, a barred spiral galaxy at redshift zphot ≈ 3, which was already mature when the Universe was only 2 Gyr old. The stellar mass (M★ = 3.9 × 109 M⊙) and barred morphology mean that ceers-2112 can be considered a progenitor of the Milky Way7-9, in terms of both structure and mass-assembly history in the first 2 Gyr of the Universe, and was the closest in mass in the first 4 Gyr. We infer that baryons in galaxies could have already dominated over dark matter at z ≈ 3, that high-redshift bars could form in approximately 400 Myr and that dynamically cold stellar disks could have been in place by redshift z = 4-5 (more than 12 Gyrs ago)10,11.
Related projects
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro