Non-detection of Magnetic Fields in the Central Stars of the Planetary Nebulae NGC 1360 and LSS 1362

Leone, Francesco; Martínez-González, M. J.; Corradi, R. L. M.; Privitera, Giovanni; Manso-Sainz, R.
Bibliographical reference

The Astrophysical Journal Letters, Volume 731, Issue 2, article id. L33 (2011).

Advertised on:
4
2011
Number of authors
5
IAC number of authors
3
Citations
38
Refereed citations
26
Description
The presence of magnetic fields is an attractive hypothesis for shaping planetary nebulae (PNe). We report on observations of the central star of the two PNe NGC 1360 and LSS 1326. We performed spectroscopy on circularly polarized light with the Focal Reducer and Low Dispersion Spectrograph at the Very Large Telescope of the European Southern Observatory. Contrary to previous reports, we find that the effective magnetic field, which is the average over the visible stellar disk of longitudinal components of the magnetic fields, is null within errors for both stars. We conclude that direct evidence of magnetic fields on the central stars of PNe is still missing—either the magnetic field is much weaker (<600 G) than previously reported, or more complex (thus leading to cancellations), or both. Certainly, indirect evidence (e.g., MASER emission) fully justify further efforts to point out the strength and morphology of such magnetic fields.
Related projects
Planetary Nebula "The Necklace"
Bipolar Nebulae
This project has three major objectives: 1) To determine the physico-chemical characteristics of bipolar planetary nebulae and symbiotic nebulae, to help understanding the origin of bipolarity and to test theoretical models, mainly models with binary central stars, aimed at explaining the observed morphology and kinematics. 2) To study the low
Antonio
Mampaso Recio
Project Image
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García