Bibcode
Comerón, S.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
1
2021
Journal
Citations
4
Refereed citations
3
Description
One of the suggested thick disc formation mechanisms is that they were born quickly and in situ from a turbulent clumpy disc. Subsequently, thin discs formed slowly within them from leftovers of the turbulent phase and from material accreted through cold flows and minor mergers. In this Letter, I propose an observational test to verify this hypothesis. By combining thick disc and total stellar masses of edge-on galaxies with galaxy stellar mass functions calculated in the redshift range of z ≤ 3.0, I derived a positive correlation between the age of the youngest stars in thick discs and the stellar mass of the host galaxy; galaxies with a present-day stellar mass of ℳ⋆(z = 0) < 1010 ℳ☉ have thick disc stars as young as 4 - 6 Gyr, whereas the youngest stars in the thick discs of Milky-Way-like galaxies are ∼10 Gyr old. I tested this prediction against the scarcely available thick disc age estimates, all of them are from galaxies with ℳ⋆(z = 0) ≳ 1010 ℳ☉, and I find that field spiral galaxies seem to follow the expectation. On the other hand, my derivation predicts ages that are too low for the thick discs in lenticular galaxies, indicating a fast early evolution for S0 galaxies. I propose the idea of conclusively testing whether thick discs formed quickly and in situ by obtaining the ages of thick discs in field galaxies with masses of ℳ⋆(z = 0) ∼ 109.5 ℳ☉ and by checking whether they contain ∼5 Gyr-old stars.
Related projects
Spiral Galaxies: Evolution and Consequences
Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of
Johan Hendrik
Knapen Koelstra