Bibcode
Lovell, M. R.; Barnes, David; Bahé, Yannick; Schaye, Joop; Schaller, Matthieu; Theuns, Tom; Bose, Sownak; Crain, Robert A.; Dalla Vecchia, C.; Frenk, Carlos S.; Hellwing, Wojciech; Kay, Scott T.; Ludlow, Aaron D.; Bower, Richard G.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 485, Issue 3, p.4071-4089
Advertised on:
5
2019
Citations
13
Refereed citations
10
Description
Dark matter particles may decay, emitting photons. Drawing on the EAGLE
family of hydrodynamical simulations of galaxy formation - including the
APOSTLE and C-EAGLE simulations - we assess the systematic uncertainties
and scatter on the decay flux from different galaxy classes, from Milky
Way satellites to galaxy clusters, and compare our results to studies of
the 3.55 keV line. We demonstrate that previous detections and
non-detections of this line are consistent with a dark matter
interpretation. For example, in our simulations the width of the dark
matter decay line for Perseus-analogue galaxy clusters lies in the range
of 1300-1700 {km s^{-1}} , and exceptionally up to 3000 {km s^{-1}} .
Therefore, the non-detection of the 3.55 keV line in the centre of the
Perseus cluster by the Hitomi collaboration is consistent with
detections by other instruments. We also consider trends with stellar
and halo mass and evaluate the scatter in the expected fluxes arising
from the anisotropic halo mass distribution and from object-to-object
variations. We provide specific predictions for observations with
XMM-Newton and with the planned X-ray telescopes XRISM and ATHENA. If
future detections of unexplained X-ray lines match our predictions,
including line widths, we will have strong evidence that we have
discovered the dark matter.
Related projects
Numerical Astrophysics: Galaxy Formation and Evolution
How galaxies formed and evolved through cosmic time is one of the key questions of modern astronomy and astrophysics. Cosmological time- and length-scales are so large that the evolution of individual galaxies cannot be directly observed. Only through numerical simulations can one follow the emergence of cosmic structures within the current
Claudio
Dalla Vecchia