The transfer of resonance line polarization with partial frequency redistribution and J-state interference. Theoretical approach and numerical methods

Belluzzi, L.; Trujillo Bueno, J.
Bibliographical reference

Astronomy and Astrophysics, Volume 564, id.A16, 18 pp.

Advertised on:
4
2014
Number of authors
2
IAC number of authors
2
Citations
30
Refereed citations
24
Description
The linear polarization signals produced by scattering processes in strong resonance lines are rich in information on the magnetic and thermal structure of the chromosphere and transition region of the Sun and of other stars. A correct modeling of these signals requires accounting for partial frequency redistribution effects, as well as for the impact of quantum interference between different fine structure levels (J-state interference). In this paper, we present a theoretical approach suitable for modeling the transfer of resonance line polarization when taking these effects into account, along with an accurate numerical method of solution of the problem's equations. We consider a two-term atom with unpolarized lower term and infinitely sharp lower levels, in the absence of magnetic fields. We show that by making simple formal substitutions on the quantum numbers, the theoretical approach derived here for a two-term atom can also be applied to describe a two-level atom with hyperfine structure. An illustrative application to the Mg ii doublet around 2800 Å is presented.
Related projects
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics
Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the
Tanausú del
Pino Alemán