The Gran Telescopio Canarias finds the farthest black hole that belongs to a rare family of galaxies

Artist's impression of a blazar, a rare class of active galaxy characterized by a relativistic jet that is pointing in the general direction of the Earth. Credit: M. Weiss/CfA

An international team of astronomers has identified one of the rarest known classes of gamma-ray emitting galaxies, called BL Lacertae, within the first 2 billion years of the age of the Universe. The team, that has used one of the largest optical telescope in the world, Gran Telescopio Canarias (GTC), located at the Observatorio del Roque de los Muchachos (Garafía, La Palma), consists of researchers from the Universidad Complutense de Madrid (UCM, Spain), DESY (Germany), University of California Riverside and Clemson University (USA). The finding is published in The Astrophysical Journal Letters.

Only a small fraction of the galaxies emits gamma rays, which is the most extreme form of light. Astronomers believe that these highly energetic photons originate from the vicinity of a supermassive black hole residing at the centers of these galaxies. When this happens, they are known as active galaxies. The black hole swallows matter from its surroundings and emits jets or, in other words, collimated streams of matter and radiation. Few of these active galaxies (less than 1%) have their jets pointing by chance toward Earth. Scientists call them blazars and are one of the most powerful sources of radiation in the universe.

Blazars come in two flavors: BL Lacertae (BL Lac) and flat-spectrum radio-quasars (FSRQs). Our current understanding about these mysterious astronomical objects is that FSRQs are relatively young active galaxies, rich in dust and gas that surround the central black hole. As time passes, the amount of matter available to feed the black hole is consumed and the FSRQ evolves to become a BL Lac object. "In other words, BL Lacs may represent the elderly and evolved phase of a blazar's life, while FSRQs resemble an adult," explains Vaidehi Paliya, a DESY researcher who participated in this program.

“Since the speed of light is limited, the farther we look, the earlier in the age of the Universe we investigate,” says Alberto Domínguez of the Institute of Physics of Particles and the Cosmos (IPARCOS) at UCM and co-author of the study. Astronomers believe that the current age of the Universe is around 13.8 billion years. The most distant FSRQ was identified at a distance when the age of the universe was merely 1 billion years. For a comparison, the farthest BL Lac that is known was found when the age of the Universe was around 2.5 billion years. Therefore, the hypothesis of the evolution from FSRQ to BL Lacs appears to be valid.

Research Team
On the left, Vaidehi S. Paliya. In the photo on the right: Cristina Cabello, Jesús Gallego, Alberto Domínguez, Armando Gil de Paz y Nicolás Cardiel.

Now, the team of international scientists has discovered a new BL Lac object, named 4FGL J1219.0+3653, much farther away than the previous record holder. "We have discovered a BL Lac existing even 800 million years earlier, this is when the Universe was less than 2 billion years old," states Cristina Cabello, a graduate student at IPARCOS-UCM. "This finding challenges the current scenario that BL Lacs are actually an evolved phase of FSRQ," adds Nicolás Cardiel, a professor at IPARCOS-UCM. Jesús Gallego, also a professor at the same institution and a co-author of the study concludes: “This discovery has challenged our knowledge of the cosmic evolution of blazars and active galaxies in general.”

The researchers have used the OSIRIS and EMIR instruments, designed and built by the Instituto de Astrofísica de Canarias (IAC) and mounted on GTC, also known as Grantecan. "These results are a clear example of how the combination of the large collecting area of ​​GTC, the world's largest optical-infrared telescope, together with the unique capabilities of complementary instruments installed in the telescope are providing breakthrough results to improve our understanding of the Universe,” underlines Romano Corradi, director of Grantecan. 

The Observatories of the Instituto de Astrofísica de Canarias (IAC) are part of the network of Singular Scientific and Technical Infrastructures (ICTS) of Spain.


Article:

Vaidehi S. Paliya, A. Domínguez, C. Cabello, et al. "The First Gamma-ray Emitting BL Lacertae Object at the Cosmic Dawn", The Astrophysical Journal Letters, Oct. 2020 DOI: 10.3847/2041-8213/abbc06  arXiv:2010.12907


Contacts:

  • Vaidehi S. Paliya, DESY postdoctoral researcher: vaidehi.s.paliya [at] gmail.com (vaidehi[dot]s[dot]paliya[at]gmail[dot]com)
  • Alberto Domínguez, IPARCOS-UCM Ramón y Cajal researcher: alberto.d [at] ucm.es (alberto[dot]d[at]ucm[dot]es)
  • Romano Corradi, director of Grantecan: romano.corradi [at] gtc.iac.es (romano[dot]corradi[at]gtc[dot]iac[dot]es)
Related projects
Project Image
Particle Astrophysics
The members of the Particle Astrophysics Group of the IAC participate actively in three large international collaborations of high-energy astrophysics: AMS-02 (Alpha Magnetic Spectrometer), the Cherenkov radiation telescopes MAGIC I and II and the Cherenkov Telescope Array Observatory ( CTAO). We also participate in the ASTRI mini-array, the gamma
Mónica Luisa
Vázquez Acosta
Related news
Artists impression of an active galactic nucleus. Credit: University of Boston-Cosmovision
An international team of scientists has obtained the first unequivocal detection of a very high speed jet of matter emitted by a galaxy in the process of merging with another. The flux of particles and radiation, which is emitted by the supermassive black hole in the centre of the galaxy and which is observed face on, shows that it is a precursor structure to the formation of a blazar, one of the most energetic objects known. This discovery was made by combining observations from several telescopes, among them the Gran Telescopio Canarias and the William Herschel Telescope at the Roque de
Advertised on
El instrumento, ubicado en el GTC, propicia el primer intento de estudiar de forma simultánea el entorno de una emisión de rayos gamma y una supernova A pesar de que son los eventos electromagnéticos más luminosos del universo, los brotes de rayos gamma (más conocidos por su acrónimo inglés GRB) guardan todavía secretos para la Astrofísica. Estos destellos, que ocurren varias veces al día, se asocian por lo general al colapso de una estrella masiva ubicada en una galaxia distante que acaba convertida en un agujero negro. Sin embargo, resulta muy complicado determinar la ubicación exacta del
Advertised on
El telescopio de rayos gamma MAGIC ha detectado la emisión pulsada de más alta energía emitida por el púlsar situado en el centro de la Nebulosa del Cangrejo. Esta famosa nebulosa se encuentra a unos 6.000 años luz de la Tierra, en la Constelación de Tauro. Es el resto de una explosión de supernova que tuvo lugar en el año 1054. En su centro se encuentra el llamado púlsar del Cangrejo, una estrella de neutrones de unos 20 kilómetros de diámetro y poco más de una masa solar, resultado de la explosión de la estrella original. Su campo magnético es unos 10 billones de veces más intenso que el
Advertised on
Photons are emitted from a galaxy QSO B0218+357 in the direction of the Earth. Due to the gravitational effect of the intervening galaxy B0218+357G photons form two paths that reach Earth with a delay of about 11 days. Photons were observed by both the Fe
Scientists working with the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) observatory report the discovery of the most distant gamma-ray source ever observed at very high energies, thanks to the “replay” of an enormous flare by a galactic gravitational lens as foreseen by Einstein’s General Relativity.
Advertised on