News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • The presence of ionized gas around galaxies with moves with them leaves a trace in the microwave background radiation (left panel) which can be detected knowing the pattern of velocities of the galaxies provided by the map of fluctuations in their redshift (right panel). Credit: Carlos Hernández-Monteagudo (IAC).
    Scientists estimate that dark matter and dark energy together are some 95% of the gravitational material in the universe while the remaining 5% is baryonic matter, which is the “normal” matter composing stars, planets, and living beings. However for decades almost one half of this matter has not been found either. Now, using a new technique, a team in which the Instituto de Astrofísica de Canarias (IAC) has participated, has shown that this “missing” baryonic matter is found filling the space between the galaxies as hot, low density gas. The same technique also gives a new tool that shows
    Advertised on
  • Firma acuerdo IAC y CNRS
    El Instituto de Astrofísica de Canarias (IAC) y el Centre National de la Recherche Scientifique (CNRS), el mayor organismo público de investigación de Francia, firmaron ayer, reunidos por videoconferencia y en el marco de las actividades de la XXVI Cumbre Hispano-Francesa, un acuerdo por el que se establece la creación del primer laboratorio internacional del CNRS en territorio español. Firmaron el convenio el Dr. Guy Perrin, director del I nstitut National des Sciences de l'Univers ( INSU ) del CNRS, y el Prof. Rafael Rebolo, director del IAC, en presencia de otros miembros directivos y
    Advertised on
  • Artist’s conception of waves trapped between the surface of a sunspot (lower image, taken with GREGOR/GFPI) and the transition region (upper image, by courtesy of NASA/SDO and AIA). Credit: Gabriel Pérez Díaz, SMM (IAC).
    Umbral flashes are sudden brightenings commonly visible in the core of some chromospheric lines. Theoretical and numerical modeling suggests that they are produced by the propagation of shock waves. According to these models and early observations, umbral flashes are associated with upflows. However, recent studies have reported umbral flashes in downflowing atmospheres. We aim to understand the origin of downflowing umbral flashes. We explore how the existence of standing waves in the umbral chromosphere impacts the generation of flashed profiles. We performed numerical simulations of wave
    Advertised on
  • Artistic recreation of a hypothetical exoplanet with artificial lights on the night side. Credit: Rafael Luis Méndez Peña/Sciworthy.com
    A researcher at the Instituto de Astrofísica de Canarias (IAC) is the lead author of a study with proposals for “technosignatures” -evidence for the use of technology or industrial activity in other parts of the Universe- for future NASA missions. The article, published in the specialized journal Acta Astronautica, contains the initial conclusions of a meeting of experts in the search for intelligent extraterrestrial life, sponsored by the space agency to gather advice about this topic.
    Advertised on
  • Artistic impression of the surface of Gliese 486 b. Credit: RenderArea.
    We detect a transiting rocky planet with an orbital period of 1.467 days around the nearby red dwarf star Gliese 486. The planet Gliese 486 b is 2.81 Earth masses and 1.31 Earth radii, a composition similar to that of Venus or Earth, as determined from exquisite radial velocity data and photometric light curves. The host star is at a distance of 26 light-years, very bright, and observable from both hemispheres of Earth. The stellar and planet properties indicate that despite the hot surface temperatures it is possible that the planet conserved part of its original atmosphere, making it an
    Advertised on
  • Artist's impression of the atmosphere of Gliese 486b. Credit: RenderArea
    During the past 25 years astronomers have discovered a wide variety of exoplanets, made of rock, ice and gas, thanks to the construction of astronomical instruments designed specifically for planet searches. Also, using a combination of different observing techniques they have been able to determine a large numher of masses, sizes, and hence densities of the planets, which helps them to estimate their internal composition and raising the number of planets which have been discovered outside the Solar System.
    Advertised on