News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Thumbnails of TNG50 (top left) and SDSS (bottom left) quenched galaxies. The top and bottom right panels show the pixel-wise contributions to the log-likelihood ratio (LLR) for the TNG50 and SDSS galaxies, respectively. See Zanisi et al. (2021) for more details.
    Can neural networks distinguish computer simulated galaxy images from observed galaxies? This is the question that has been addressed in this work. For years, reproducing the morphological diversity of galaxies has been a problem for cosmological simulations. The new generation of simulations, such as Illustris TNG, are becoming more and more realistic. But enough to fool a neural network? In this work it is shown that it does not. Using unsupervised deep generative models, it is shown that, despite the fact that realism increases greatly in the last generation of simulations and with
    Advertised on
  • The unprecedented spectropolarimetric observations achieved during the CLASP2 space experiment.  For detailed information, see http://ow.ly/S2gS50DF0wS. Credit: NAOJ, IAC, NASA/MSFC, IAS.
    The solar chromosphere is the region between the relatively thin and cold photosphere (temperature of a few thousand degrees) and the hot and extended corona (temperatures above a million degrees). Although the chromosphere is much less hot than the corona, it is also significantly denser and thus much more energy is required to sustain it. Moreover, the mechanical energy necessary to heat the corona needs to traverse the chromosphere, making it a crucial interface region to understand how this energy propagates and is released in the most violent activity of the solar upper atmosphere
    Advertised on
  • Reconstruction of the cosmic web (shaded areas in grey in the left panel) based on a distribution of galaxies (in red in the left panel) and the primordial fluctuations (right panel). Credit: Francisco-Shu Kitaura (IAC).
    The Instituto de Astrofísica de Canarias (IAC) has led an international team which has developed an algorithm called COSMIC BIRTH to analyse large scale cosmic structures. This new computation method will permit the analysis of the evolution of the structure of dark matter from the early universe until the formation of present day galaxies. This work was recently published in the journal Monthly Notices of the Royal Astronomical Society (MNRAS).
    Advertised on
  • Solar active region artistic simulation
    Every day space telescopes provide spectacular images of the solar activity. However, their instruments are blind to its main driver: the magnetic field in the outer layers of the solar atmosphere, where the explosive events that occasionally affect the Earth occur. The extraordinary observations of the polarization of the Sun’s ultraviolet light achieved by the CLASP2 mission have made it possible to map the magnetic field throughout the entire solar atmosphere, from the photosphere until the base of the extremely hot corona. This investigation, published today in the journal Science
    Advertised on
  • Schematic diagram of the evolution of the Universe from the inflation (left) to the present (right). The “reconstruction method” winds back the evolution from right to left on this illustration to reproduce the primordial density fluctuations from the current galaxy distribution. Credit: Institute of Statistical Mathematics (ISN).
    A team of astronomers from the National Astronomical Observatory of Japan (NAOJ), with participation by the Instituto de Astrofísica de Canarias (IAC) have tested a method for reconstructing the state of the early Universe applying it to 4,000 simulated universes. To do so they used the ATERUI II supercomputer, at the Japanese observatory and the fastest in the world dedicated to astronomical simulations.
    Advertised on
  • Spectral energy distribution (in white; best theoretical fit in blue) of an extremely red old star. The photometric data from Spitzer's IRAC and MIPS instruments are represented in purple. Credits: Dell'Agli et al. (2021) with  background infrared image of the Large Magellanic Cloud, NASA/JPL-Caltech/Meixner(STSCI) and the Sage Legacy Team.
    Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) (i.e., the late evolutionary stages of Sun-like stars) reproduces reasonably well the mid-infrared colours and magnitudes of most of the C-rich sources in low-metallicity galaxies with known distances like the Large Magellanic Cloud (LMC). The only exception to this is a small subset of extremely red objects (EROs). An analysis of the spectral energy distributions of EROs suggests the presence of large quantities of dust, which demand gas densities in the outflow significantly
    Advertised on