The ALHAMBRA survey: B-band luminosity function of quiescent and star-forming galaxies at 0.2 ≤ z < 1 by PDF analysis

López-Sanjuan, C.; Tempel, E.; Benítez, N.; Molino, A.; Viironen, K.; Díaz-García, L. A.; Fernández-Soto, A.; Santos, W. A.; Varela, J.; Cenarro, A. J.; Moles, M.; Arnalte-Mur, P.; Ascaso, B.; Montero-Dorta, A. D.; Pović, M.; Martínez, V. J.; Nieves-Seoane, L.; Stefanon, M.; Hurtado-Gil, Ll.; Márquez, I.; Perea, J.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; González Delgado, R. M.; Husillos, C.; Infante, L.; Masegosa, J.; del Olmo, A.; Prada, F.; Quintana, J. M.
Bibliographical reference

Astronomy and Astrophysics, Volume 599, id.A62, 24 pp.

Advertised on:
3
2017
Number of authors
37
IAC number of authors
3
Citations
20
Refereed citations
18
Description
Aims: Our goal is to study the evolution of the B-band luminosity function (LF) since z 1 using ALHAMBRA data. Methods: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. Results: We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at 0.2 ≤ z< 1 and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of MB* ∝ Qz is QSF = -1.03 ± 0.08 and QQ = -0.80 ± 0.08, and of log 10φ∗ ∝ Pz is PSF = -0.01 ± 0.03 and PQ = -0.41 ± 0.05. The measured faint-end slopes are αSF = -1.29 ± 0.02 and αQ = -0.53 ± 0.04. We find a significant population of faint quiescent galaxies with MB ≳ -18, modelled by a second Schechter function with slope β = -1.31 ± 0.11. Conclusions: We present a robust methodology to compute LFs using multi-filter photometric data. The application to ALHAMBRA shows a factor 2.55 ± 0.14 decrease in the luminosity density jB of star-forming galaxies, and a factor 1.25 ± 0.16 increase in the jB of quiescent ones since z = 1, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to jB increases from 3% at z = 1 to 6% at z = 0. The developed methodology will be applied to future multi-filter surveys such as J-PAS. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto (CAHA), jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC)
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies

Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to

Jairo
Méndez Abreu
Project Image
Evolution of Galaxies

Galaxy evolution is a crucial topic in modern extragalactic astrophysics, linking cosmology to the Local Universe. Their study requires collecting statistically significant samples of galaxies of different luminosities at different distances. It implies the ability to observe faint objects using different techniques, and at different wavelengths

Jorge
Cepa Nogue