Bibcode
Padilla-Torres, Carmen Pilar; Rebolo, Rafael; Gutiérrez, Carlos M.; Génova-Santos, Ricardo; Rubiño-Martin, José Alberto
Bibliographical reference
Highlights of Spanish Astrophysics V, Astrophysics and Space Science Proceedings, ISBN 978-3-642-11249-2. Springer-Verlag Berlin Heidelberg, 2010, p. 329
Advertised on:
2010
Citations
2
Refereed citations
2
Description
In a 24deg2 survey for baryonic matter at 33GHz in the Corona
Borealis supercluster (CrB-SC) of galaxies (z=0.07), with the Very Small
Array (VSA) interferometer (Génova-Santos et al. 2005, MNRAS 363,
79; 2008, arXiv: 0804.0199), we found a very strong temperature
decrement in the Cosmic Microwave Background (CMB). It has an amplitude
of-230±23μK and is located near the center of the
supercluster, in a position with no known galaxy clusters, and without a
significant X-ray emission in the ROSAT All-Sky Survey. Monte-Carlo
simulations discard the primordial CMB Gaussian field as a possible
explanation for this decrement at a level of 99.6%. We therefore
concluded that this could be indicative of a Sunyaev-Zel'dovich (SZ)
effect produced either by a warm/hot gas distribution in the
intercluster medium or by a farther unknown galaxy cluster. Here we
present an optical study of the galaxy distribution in this region,
aiming at elucidating whether it traces a possible warm/hot gas
filamentary distribution or a galaxy cluster. First, we have studied the
galaxy population down to r≤20 magnitudes in the SDSS. This reveals
an overdensity by a factor of 2 with respect to nearby control fields,
but lower than in the galaxy clusters member of the CrB-SC. This
indicates that the associated gas could at least be partially
responsible for the observed CMB decrement. Second, we obtained
spectroscopic redshifts, with the William Herschel Telescope (WHT), for
a sample of galaxies in the region of the cold spot, and found evidence
of a substructure with redshifts extending from 0.07 to 0.10. This
suggests the existence of a dense filamentary structure with a length of
several tens of Mpc. Finally, we investigated the presence of at least
one farther cluster in the same line-of-sight, at z≈0.11.