Climate change in hell: Long-term variation in transits of the evaporating planet K2-22b

Gaidos, E.; Parviainen, H.; Esparza-Borges, E.; Fukui, A.; Isogai, K.; Kawauchi, K.; de Leon, J.; Mori, M.; Murgas, F.; Narita, N.; Palle, E.; Watanabe, N.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
8
2024
Number of authors
12
IAC number of authors
6
Citations
1
Refereed citations
0
Description
Context. Rocky planets on ultra-short period orbits can have surface magma oceans and rock-vapour atmospheres in which dust can condense. Observations of that dust can inform us about the composition and surface conditions on these objects.
Aims: We constrained the properties and long-term (decade) behaviour of the transiting dust cloud from the evaporating planet K2-22b. Methods.We observed K2-22b around 40 predicted transits with MuSCAT ground-based multi-optical channel imagers, and complemented these data with long-term monitoring by the ground-based ATLAS (2018-2024) and space-based TESS (2021-2023) surveys.
Results: We detected signals during 7 transits, none of which showed significant wavelength dependence. The expected number of MuSCAT-detected transits is ≥22, indicating a decline in mean transit depth since the K2 discovery observations in 2014.
Conclusions: The lack of a significant wavelength dependence indicates that dust grains are large or the cloud is optically thick. Long-term trends of depth could be due to a magnetic cycle on the host star or to overturn of the planet's dayside surface magma ocean. The possibility that K2-22b is disappearing altogether is ruled out by the stability of the transit ephemeris against non-gravitational forces, which constrains the mass to be at least comparable to Ceres.
Related projects
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago