Dark Energy Survey Year 3 results: Simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps. II. cosmological results

Gatti, M.; Campailla, G.; Jeffrey, N.; Whiteway, L.; Porredon, A.; Prat, J.; Williamson, J.; Raveri, M.; Jain, B.; Ajani, V.; Giannini, G.; Yamamoto, M.; Zhou, C.; Blazek, J.; Anbajagane, D.; Samuroff, S.; Kacprzak, T.; Alarcon, A.; Amon, A.; Bechtol, K.; Becker, M.; Bernstein, G.; Campos, A.; Chang, C.; Chen, R.; Choi, A.; Davis, C.; Derose, J.; Diehl, H. T.; Dodelson, S.; Doux, C.; Eckert, K.; Elvin-Poole, J.; Everett, S.; Ferte, A.; Gruen, D.; Gruendl, R.; Harrison, I.; Hartley, W. G.; Herner, K.; Huff, E. M.; Jarvis, M.; Kuropatkin, N.; Leget, P. F.; MacCrann, N.; McCullough, J.; Myles, J.; Navarro-Alsina, A.; Pandey, S.; Rollins, R. P.; Roodman, A.; Sanchez, C.; Secco, L. F.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Troxel, M.; Tutusaus, I.; Varga, T. N.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Allam, S. S.; Alves, O.; Andrade-Oliveira, F.; Bacon, D.; Bocquet, S.; Brooks, D.; Carnero Rosell, A.; Carretero, J.; da Costa, L. N.; Pereira, M. E. S.; De Vicente, J.; Ferrero, I.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lee, S.; Marshall, J. L.; Mena-Fernández, J.; Miquel, R.; Pieres, A.; Plazas Malagón, A. A.; Sanchez, E.; Sanchez Cid, D.; Schubnell, M.; Smith, M.; Suchyta, E.; Tarle, G.; Weaverdyck, N. et al.
Bibliographical reference

Physical Review D

Advertised on:
3
2025
Number of authors
103
IAC number of authors
1
Citations
0
Refereed citations
0
Description
We present a simulation-based cosmological analysis using a combination of Gaussian and non-Gaussian statistics of the weak lensing mass (convergence) maps from the first three years of the Dark Energy Survey. We implement the following: (1) second and third moments; (2) wavelet phase harmonics; (3) the scattering transform. Our analysis is fully based on simulations, spans a space of seven w Cold Dark Matter (wCDM) cosmological parameters, and forward models the most relevant sources of systematics inherent in the data: masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration. We implement a neural network compression of the summary statistics, and we estimate the parameter posteriors using a simulation-based inference approach. Including and combining different non-Gaussian statistics is a powerful tool that strongly improves constraints over Gaussian statistics (in our case, the second moments); in particular, the figure of merit (S8,Ωm) is improved by 70% (ΛCDM) and 90% (wCDM). When all the summary statistics are combined, we achieve a 2% constraint on the amplitude of fluctuations parameter S8≡σ8(Ωm/0.3)0.5, obtaining S8=0.794±0.017 (ΛCDM) and S8=0.817±0.021 (wCDM), and a ∼10% constraint on Ωm, obtaining Ωm=0.259±0.025 (ΛCDM) and Ωm=0.273±0.029 (wCDM). In the context of the wCDM scenario, these statistics also strengthen the constraints on the parameter w, obtaining w<-0.72. The constraints from different statistics are shown to be internally consistent (with a p-value>0.1 for all combinations of statistics examined). We compare our results to other weak lensing results from the first three years of the Dark Energy Survey data, finding good consistency; we also compare with results from external datasets, such as Planck constraints from the cosmic microwave background, finding statistical agreement, with discrepancies no greater than <2.2σ.