Detection of Large Acoustic Energy Flux in the Solar Atmosphere

Bello González, N.; Franz, M.; Martínez-Pillet, V.; Bonet, J. A.; Solanki, S. K.; del Toro Iniesta, J. C.; Schmidt, W.; Gandorfer, A.; Domingo, V.; Barthol, P.; Berkefeld, T.; Knölker, M.
Bibliographical reference

The Astrophysical Journal Letters, Volume 723, Issue 2, pp. L134-L138 (2010).

Advertised on:
11
2010
Number of authors
12
IAC number of authors
2
Citations
65
Refereed citations
56
Description
We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of ~6400-7700 W m-2 at a height of ~250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson & Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules.
Related projects
Project Image
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García