Doppler-velocity Drifts Detected in a Solar Prominence

Zapiór, Maciej; Heinzel, Petr; Khomenko, Elena
Bibliographical reference

The Astrophysical Journal

Advertised on:
7
2022
Number of authors
3
IAC number of authors
1
Citations
5
Refereed citations
4
Description
We analyzed multiline observations of a quiescent prominence from the slit spectrograph located at the Ondřejov Observatory. Dopplergrams and integrated intensity maps of the whole prominence were obtained from observations in six spectral lines: Ca II H, Hϵ, Hβ, He I D3, Hα, and Ca II IR. By combining integrated intensity maps with non-LTE radiative-transfer modeling, we carefully identified areas in an optically thin regime. The comparison of the Doppler-velocity maps and scatterplots from different lines shows the existence of differences in the velocity of ions and neutrals called velocity drift. The drift is of a local nature, present mostly at prominence edges in the area with a large velocity gradient, as can be tentatively expected based on multifluid MHD models. We could not explore the time evolution of the drift, since our data set consists of a single scan only. Our paper brings another contribution to a rather controversial problem of the detection of multifluid effects in solar prominences.
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes

Numerical simulation through complex computer codes has been a fundamental tool in physics and technology research for decades. The rapid growth of computing capabilities, coupled with significant advances in numerical mathematics, has made this branch of research accessible to medium-sized research centers, bridging the gap between theoretical and

Daniel Elías
Nóbrega Siverio
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García