Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy

Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A.
Bibliographical reference

The Astrophysical Journal Letters, Volume 837, Issue 2, article id. L21, 6 pp. (2017).

Advertised on:
3
2017
Number of authors
9
IAC number of authors
2
Citations
280
Refereed citations
249
Description
We report on the detailed analysis of a gravitationally lensed Y-band dropout, A2744_YD4, selected from deep Hubble Space Telescope imaging in the Frontier Field cluster Abell 2744. Band 7 observations with the Atacama Large Millimeter/submillimeter Array (ALMA) indicate the proximate detection of a significant 1 mm continuum flux suggesting the presence of dust for a star-forming galaxy with a photometric redshift of z≃ 8. Deep X-SHOOTER spectra confirms the high-redshift identity of A2744_YD4 via the detection of Lyα emission at a redshift z = 8.38. The association with the ALMA detection is confirmed by the presence of [O iii] 88 μm emission at the same redshift. Although both emission features are only significant at the 4σ level, we argue their joint detection and the positional coincidence with a high-redshift dropout in the Hubble Space Telescope images confirms the physical association. Analysis of the available photometric data and the modest gravitational magnification (μ ≃ 2) indicates A2744_YD4 has a stellar mass of ∼2 × 109 {M}ȯ , a star formation rate of ∼20 {M}ȯ yr‑1 and a dust mass of ∼6 × 106 {M}ȯ . We discuss the implications of the formation of such a dust mass only ≃ 200 {Myr} after the onset of cosmic reionization.
Related projects
Project Image
Formation and Evolution of Galaxies: Observations in Infrared and other Wavelengths
This IAC research group carries out several extragalactic projects in different spectral ranges, using space as well as ground-based telescopes, to study the cosmological evolution of galaxies and the origin of nuclear activity in active galaxies. The group is a member of the international consortium which built the SPIRE instrument for the
Ismael
Pérez Fournon