Bibcode
Asplund, M.; Howes, L. M.; Casey, A. R.; Keller, S. C.; Yong, D.; Gilmore, G.; Lind, K.; Worley, C.; Bessell, M. S.; Casagrande, L.; Marino, A. F.; Nataf, D. M.; Owen, C. I.; Da Costa, G. S.; Schmidt, B. P.; Tisserand, P.; Randich, S.; Feltzing, S.; Vallenari, A.; Allende Prieto, C.; Bensby, T.; Flaccomio, E.; Korn, A. J.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Bergemann, M.; Costado, M. T.; Damiani, F.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Magrini, L.; Maiorca, E.; Masseron, T.; Morbidelli, L.; Sacco, G. G.; Minniti, D.; Zoccali, M.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 445, Issue 4, p.4241-4246
Advertised on:
12
2014
Citations
62
Refereed citations
53
Description
We present the first results of the EMBLA survey (Extremely Metal-poor
BuLge stars with AAOmega), aimed at finding metal-poor stars in the
Milky Way bulge, where the oldest stars should now preferentially
reside. EMBLA utilizes SkyMapper photometry to pre-select metal-poor
candidates, which are subsequently confirmed using AAOmega spectroscopy.
We describe the discovery and analysis of four bulge giants with -2.72
≤ [Fe/H] ≤ -2.48, the lowest metallicity bulge stars studied with
high-resolution spectroscopy to date. Using FLAMES/UVES spectra through
the Gaia-ESO Survey we have derived abundances of twelve elements. Given
the uncertainties, we find a chemical similarity between these bulge
stars and halo stars of the same metallicity, although the abundance
scatter may be larger, with some of the stars showing unusual
[α/Fe] ratios.
Related projects
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto