Identification of red supergiants in nearby galaxies with mid-IR photometry

Morrell, N. I.; Prieto, J. L.; García-Álvarez, D.; Mehner, A.; Bonanos, A. Z.; Britavskiy, N. E.
Bibliographical reference

Astronomy and Astrophysics, Volume 562, id.A75, 7 pp.

Advertised on:
2
2014
Number of authors
6
IAC number of authors
1
Citations
22
Refereed citations
19
Description
Context. The role of episodic mass loss in massive-star evolution is one of the most important open questions of current stellar evolution theory. Episodic mass loss produces dust and therefore causes evolved massive stars to be very luminous in the mid-infrared and dim at optical wavelengths. Aims: We aim to increase the number of investigated luminous mid-IR sources to shed light on the late stages of these objects. To achieve this we employed mid-IR selection criteria to identity dusty evolved massive stars in two nearby galaxies. Methods: The method is based on mid-IR colors, using 3.6 μm and 4.5 μm photometry from archival Spitzer Space Telescope images of nearby galaxies and J-band photometry from 2MASS. We applied our criteria to two nearby star-forming dwarf irregular galaxies, Sextans A and IC 1613, selecting eight targets, which we followed-up with spectroscopy. Results: Our spectral classification and analysis yielded the discovery of two M-type supergiants in IC 1613, three K-type supergiants and one candidate F-type giant in Sextans A, and two foreground M giants. We show that the proposed criteria provide an independent way for identifying dusty evolved massive stars that can be extended to all nearby galaxies with available Spitzer/IRAC images at 3.6 μm and 4.5 μm. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio de El Roque de Los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma, and the 2.5 m du Pont telescope in operation at Las Campanas Observatory, Chile.Spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A75
Related projects
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto