Iron and s-elements abundance variations in NGC 5286: comparison with `anomalous' globular clusters and Milky Way satellites

Marino, A. F.; Milone, A. P.; Karakas, A. I.; Casagrande, L.; Yong, D.; Shingles, L.; Da Costa, G.; Norris, J. E.; Stetson, P. B.; Lind, K.; Asplund, M.; Collet, R.; Jerjen, H.; Sbordone, L.; Aparicio, A.; Cassisi, S.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 450, Issue 1, p.815-845

Advertised on:
6
2015
Number of authors
16
IAC number of authors
1
Citations
151
Refereed citations
124
Description
We present a high-resolution spectroscopic analysis of 62 red giants in the Milky Way globular cluster (GC) NGC 5286. We have determined abundances of representative light proton-capture, α, Fe-peak and neutron-capture element groups, and combined them with photometry of multiple sequences observed along the colour-magnitude diagram. Our principal results are: (i) a broad, bimodal distribution in s-process element abundance ratios, with two main groups, the s-poor and s-rich groups; (ii) substantial star-to-star Fe variations, with the s-rich stars having higher Fe, e.g. < [Fe/H]> _{s-rich} - < [Fe/H]> _{s-poor} ˜ 0.2 dex; and (iii) the presence of O-Na-Al (anti)correlations in both stellar groups. We have defined a new photometric index, cBVI = (B - V) - (V - I), to maximize the separation in the colour-magnitude diagram between the two stellar groups with different Fe and s-element content, and this index is not significantly affected by variations in light elements (such as the O-Na anticorrelation). The variations in the overall metallicity present in NGC 5286 add this object to the class of anomalous GCs. Furthermore, the chemical abundance pattern of NGC 5286 resembles that observed in some of the anomalous GCs, e.g. M 22, NGC 1851, M 2, and the more extreme ω Centauri, that also show internal variations in s-elements, and in light elements within stars with different Fe and s-elements content. In view of the common variations in s-elements, we propose the term s-Fe-anomalous GCs to describe this sub-class of objects. The similarities in chemical abundance ratios between these objects strongly suggest similar formation and evolution histories, possibly associated with an origin in tidally disrupted dwarf satellites.
Related projects
NGC 2808 Globular Cluster
Milky Way and Nearby Galaxies
The general aim of the project is to research the structure, evolutionary history and formation of galaxies through the study of their resolved stellar populations, both from photometry and spectroscopy. The group research concentrates in the most nearby objects, namely the Local Group galaxies including the Milky Way and M33 under the hypothesis
Martín
López Corredoira